Rotational-State-Dependent Dispersion of Molecules by Pulsed Optical Standing Waves
We report on the rotational-state-dependent, transverse acceleration of CS_{2} molecules affected by pulsed optical standing waves. The steep gradient of the standing wave potential imparts far stronger dipole forces on the molecules than propagating pulses do. Moreover, large changes in the transve...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2015-11, Vol.115 (22), p.223001-223001, Article 223001 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 223001 |
---|---|
container_issue | 22 |
container_start_page | 223001 |
container_title | Physical review letters |
container_volume | 115 |
creator | Sun, Xing Nan Kim, Lee Yeong Zhao, Bum Suk Chung, Doo Soo |
description | We report on the rotational-state-dependent, transverse acceleration of CS_{2} molecules affected by pulsed optical standing waves. The steep gradient of the standing wave potential imparts far stronger dipole forces on the molecules than propagating pulses do. Moreover, large changes in the transverse velocities (i.e., up to 80 m/s) obtained with the standing waves are well reproduced in numerical simulations using the effective polarizability that depends on the molecular rotational states. Our analysis based on the rotational-state-dependent effective polarizability can therefore serve as a basis for developing a new technique of state selection for both polar and nonpolar molecules. |
doi_str_mv | 10.1103/PhysRevLett.115.223001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826639954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786186286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-383c818e1d0048d888db5dd641c0cf9fa495c9d7941003fb837c60a023f9cc223</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBCIlsIvVD5ySVnHiWMfUXlKRa1aEMfItTcQlCYhdir17zFqQdw47Woeu5ohZMxgwhjwq8X7zi1xO0PvA5BO4pgDsCMyZJCpKGMsOSZDAM4iBZANyJlzHxAUsZCnZBALkQIHNiSrZeO1L5taV9EqbBjdYIu1xdrTm9K12LlA0qagT02Fpq_Q0fWOLvrKoaXz1pdGVzQ4a1vWb_RVb9Gdk5NCB_7iMEfk5e72efoQzeb3j9PrWWS4ynzEJTeSSWQWIJFWSmnXqbUiYQZMoQqdqNQom6mEhSDFWvLMCNAQ80IZEwKPyOX-bts1nz06n29KZ7CqdI1N73ImQ06uVJr8L82kYFLEUgSp2EtN1zjXYZG3XbnR3S5nkH93n__pPgBpvu8-GMeHH_16g_bX9lM2_wJClYJB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786186286</pqid></control><display><type>article</type><title>Rotational-State-Dependent Dispersion of Molecules by Pulsed Optical Standing Waves</title><source>American Physical Society Journals</source><creator>Sun, Xing Nan ; Kim, Lee Yeong ; Zhao, Bum Suk ; Chung, Doo Soo</creator><creatorcontrib>Sun, Xing Nan ; Kim, Lee Yeong ; Zhao, Bum Suk ; Chung, Doo Soo</creatorcontrib><description>We report on the rotational-state-dependent, transverse acceleration of CS_{2} molecules affected by pulsed optical standing waves. The steep gradient of the standing wave potential imparts far stronger dipole forces on the molecules than propagating pulses do. Moreover, large changes in the transverse velocities (i.e., up to 80 m/s) obtained with the standing waves are well reproduced in numerical simulations using the effective polarizability that depends on the molecular rotational states. Our analysis based on the rotational-state-dependent effective polarizability can therefore serve as a basis for developing a new technique of state selection for both polar and nonpolar molecules.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.115.223001</identifier><identifier>PMID: 26650301</identifier><language>eng</language><publisher>United States</publisher><subject>Computer simulation ; Dipoles ; Dispersions ; Mathematical models ; Rotational states ; Standing waves ; Transverse acceleration ; Wave propagation</subject><ispartof>Physical review letters, 2015-11, Vol.115 (22), p.223001-223001, Article 223001</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-383c818e1d0048d888db5dd641c0cf9fa495c9d7941003fb837c60a023f9cc223</citedby><cites>FETCH-LOGICAL-c397t-383c818e1d0048d888db5dd641c0cf9fa495c9d7941003fb837c60a023f9cc223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26650301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Xing Nan</creatorcontrib><creatorcontrib>Kim, Lee Yeong</creatorcontrib><creatorcontrib>Zhao, Bum Suk</creatorcontrib><creatorcontrib>Chung, Doo Soo</creatorcontrib><title>Rotational-State-Dependent Dispersion of Molecules by Pulsed Optical Standing Waves</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We report on the rotational-state-dependent, transverse acceleration of CS_{2} molecules affected by pulsed optical standing waves. The steep gradient of the standing wave potential imparts far stronger dipole forces on the molecules than propagating pulses do. Moreover, large changes in the transverse velocities (i.e., up to 80 m/s) obtained with the standing waves are well reproduced in numerical simulations using the effective polarizability that depends on the molecular rotational states. Our analysis based on the rotational-state-dependent effective polarizability can therefore serve as a basis for developing a new technique of state selection for both polar and nonpolar molecules.</description><subject>Computer simulation</subject><subject>Dipoles</subject><subject>Dispersions</subject><subject>Mathematical models</subject><subject>Rotational states</subject><subject>Standing waves</subject><subject>Transverse acceleration</subject><subject>Wave propagation</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBCIlsIvVD5ySVnHiWMfUXlKRa1aEMfItTcQlCYhdir17zFqQdw47Woeu5ohZMxgwhjwq8X7zi1xO0PvA5BO4pgDsCMyZJCpKGMsOSZDAM4iBZANyJlzHxAUsZCnZBALkQIHNiSrZeO1L5taV9EqbBjdYIu1xdrTm9K12LlA0qagT02Fpq_Q0fWOLvrKoaXz1pdGVzQ4a1vWb_RVb9Gdk5NCB_7iMEfk5e72efoQzeb3j9PrWWS4ynzEJTeSSWQWIJFWSmnXqbUiYQZMoQqdqNQom6mEhSDFWvLMCNAQ80IZEwKPyOX-bts1nz06n29KZ7CqdI1N73ImQ06uVJr8L82kYFLEUgSp2EtN1zjXYZG3XbnR3S5nkH93n__pPgBpvu8-GMeHH_16g_bX9lM2_wJClYJB</recordid><startdate>20151127</startdate><enddate>20151127</enddate><creator>Sun, Xing Nan</creator><creator>Kim, Lee Yeong</creator><creator>Zhao, Bum Suk</creator><creator>Chung, Doo Soo</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20151127</creationdate><title>Rotational-State-Dependent Dispersion of Molecules by Pulsed Optical Standing Waves</title><author>Sun, Xing Nan ; Kim, Lee Yeong ; Zhao, Bum Suk ; Chung, Doo Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-383c818e1d0048d888db5dd641c0cf9fa495c9d7941003fb837c60a023f9cc223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computer simulation</topic><topic>Dipoles</topic><topic>Dispersions</topic><topic>Mathematical models</topic><topic>Rotational states</topic><topic>Standing waves</topic><topic>Transverse acceleration</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xing Nan</creatorcontrib><creatorcontrib>Kim, Lee Yeong</creatorcontrib><creatorcontrib>Zhao, Bum Suk</creatorcontrib><creatorcontrib>Chung, Doo Soo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xing Nan</au><au>Kim, Lee Yeong</au><au>Zhao, Bum Suk</au><au>Chung, Doo Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotational-State-Dependent Dispersion of Molecules by Pulsed Optical Standing Waves</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2015-11-27</date><risdate>2015</risdate><volume>115</volume><issue>22</issue><spage>223001</spage><epage>223001</epage><pages>223001-223001</pages><artnum>223001</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We report on the rotational-state-dependent, transverse acceleration of CS_{2} molecules affected by pulsed optical standing waves. The steep gradient of the standing wave potential imparts far stronger dipole forces on the molecules than propagating pulses do. Moreover, large changes in the transverse velocities (i.e., up to 80 m/s) obtained with the standing waves are well reproduced in numerical simulations using the effective polarizability that depends on the molecular rotational states. Our analysis based on the rotational-state-dependent effective polarizability can therefore serve as a basis for developing a new technique of state selection for both polar and nonpolar molecules.</abstract><cop>United States</cop><pmid>26650301</pmid><doi>10.1103/PhysRevLett.115.223001</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2015-11, Vol.115 (22), p.223001-223001, Article 223001 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1826639954 |
source | American Physical Society Journals |
subjects | Computer simulation Dipoles Dispersions Mathematical models Rotational states Standing waves Transverse acceleration Wave propagation |
title | Rotational-State-Dependent Dispersion of Molecules by Pulsed Optical Standing Waves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotational-State-Dependent%20Dispersion%20of%20Molecules%20by%20Pulsed%20Optical%20Standing%20Waves&rft.jtitle=Physical%20review%20letters&rft.au=Sun,%20Xing%20Nan&rft.date=2015-11-27&rft.volume=115&rft.issue=22&rft.spage=223001&rft.epage=223001&rft.pages=223001-223001&rft.artnum=223001&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.115.223001&rft_dat=%3Cproquest_cross%3E1786186286%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786186286&rft_id=info:pmid/26650301&rfr_iscdi=true |