Rotational-State-Dependent Dispersion of Molecules by Pulsed Optical Standing Waves

We report on the rotational-state-dependent, transverse acceleration of CS_{2} molecules affected by pulsed optical standing waves. The steep gradient of the standing wave potential imparts far stronger dipole forces on the molecules than propagating pulses do. Moreover, large changes in the transve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2015-11, Vol.115 (22), p.223001-223001, Article 223001
Hauptverfasser: Sun, Xing Nan, Kim, Lee Yeong, Zhao, Bum Suk, Chung, Doo Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223001
container_issue 22
container_start_page 223001
container_title Physical review letters
container_volume 115
creator Sun, Xing Nan
Kim, Lee Yeong
Zhao, Bum Suk
Chung, Doo Soo
description We report on the rotational-state-dependent, transverse acceleration of CS_{2} molecules affected by pulsed optical standing waves. The steep gradient of the standing wave potential imparts far stronger dipole forces on the molecules than propagating pulses do. Moreover, large changes in the transverse velocities (i.e., up to 80  m/s) obtained with the standing waves are well reproduced in numerical simulations using the effective polarizability that depends on the molecular rotational states. Our analysis based on the rotational-state-dependent effective polarizability can therefore serve as a basis for developing a new technique of state selection for both polar and nonpolar molecules.
doi_str_mv 10.1103/PhysRevLett.115.223001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826639954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786186286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-383c818e1d0048d888db5dd641c0cf9fa495c9d7941003fb837c60a023f9cc223</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBCIlsIvVD5ySVnHiWMfUXlKRa1aEMfItTcQlCYhdir17zFqQdw47Woeu5ohZMxgwhjwq8X7zi1xO0PvA5BO4pgDsCMyZJCpKGMsOSZDAM4iBZANyJlzHxAUsZCnZBALkQIHNiSrZeO1L5taV9EqbBjdYIu1xdrTm9K12LlA0qagT02Fpq_Q0fWOLvrKoaXz1pdGVzQ4a1vWb_RVb9Gdk5NCB_7iMEfk5e72efoQzeb3j9PrWWS4ynzEJTeSSWQWIJFWSmnXqbUiYQZMoQqdqNQom6mEhSDFWvLMCNAQ80IZEwKPyOX-bts1nz06n29KZ7CqdI1N73ImQ06uVJr8L82kYFLEUgSp2EtN1zjXYZG3XbnR3S5nkH93n__pPgBpvu8-GMeHH_16g_bX9lM2_wJClYJB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786186286</pqid></control><display><type>article</type><title>Rotational-State-Dependent Dispersion of Molecules by Pulsed Optical Standing Waves</title><source>American Physical Society Journals</source><creator>Sun, Xing Nan ; Kim, Lee Yeong ; Zhao, Bum Suk ; Chung, Doo Soo</creator><creatorcontrib>Sun, Xing Nan ; Kim, Lee Yeong ; Zhao, Bum Suk ; Chung, Doo Soo</creatorcontrib><description>We report on the rotational-state-dependent, transverse acceleration of CS_{2} molecules affected by pulsed optical standing waves. The steep gradient of the standing wave potential imparts far stronger dipole forces on the molecules than propagating pulses do. Moreover, large changes in the transverse velocities (i.e., up to 80  m/s) obtained with the standing waves are well reproduced in numerical simulations using the effective polarizability that depends on the molecular rotational states. Our analysis based on the rotational-state-dependent effective polarizability can therefore serve as a basis for developing a new technique of state selection for both polar and nonpolar molecules.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.115.223001</identifier><identifier>PMID: 26650301</identifier><language>eng</language><publisher>United States</publisher><subject>Computer simulation ; Dipoles ; Dispersions ; Mathematical models ; Rotational states ; Standing waves ; Transverse acceleration ; Wave propagation</subject><ispartof>Physical review letters, 2015-11, Vol.115 (22), p.223001-223001, Article 223001</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-383c818e1d0048d888db5dd641c0cf9fa495c9d7941003fb837c60a023f9cc223</citedby><cites>FETCH-LOGICAL-c397t-383c818e1d0048d888db5dd641c0cf9fa495c9d7941003fb837c60a023f9cc223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26650301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Xing Nan</creatorcontrib><creatorcontrib>Kim, Lee Yeong</creatorcontrib><creatorcontrib>Zhao, Bum Suk</creatorcontrib><creatorcontrib>Chung, Doo Soo</creatorcontrib><title>Rotational-State-Dependent Dispersion of Molecules by Pulsed Optical Standing Waves</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We report on the rotational-state-dependent, transverse acceleration of CS_{2} molecules affected by pulsed optical standing waves. The steep gradient of the standing wave potential imparts far stronger dipole forces on the molecules than propagating pulses do. Moreover, large changes in the transverse velocities (i.e., up to 80  m/s) obtained with the standing waves are well reproduced in numerical simulations using the effective polarizability that depends on the molecular rotational states. Our analysis based on the rotational-state-dependent effective polarizability can therefore serve as a basis for developing a new technique of state selection for both polar and nonpolar molecules.</description><subject>Computer simulation</subject><subject>Dipoles</subject><subject>Dispersions</subject><subject>Mathematical models</subject><subject>Rotational states</subject><subject>Standing waves</subject><subject>Transverse acceleration</subject><subject>Wave propagation</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBCIlsIvVD5ySVnHiWMfUXlKRa1aEMfItTcQlCYhdir17zFqQdw47Woeu5ohZMxgwhjwq8X7zi1xO0PvA5BO4pgDsCMyZJCpKGMsOSZDAM4iBZANyJlzHxAUsZCnZBALkQIHNiSrZeO1L5taV9EqbBjdYIu1xdrTm9K12LlA0qagT02Fpq_Q0fWOLvrKoaXz1pdGVzQ4a1vWb_RVb9Gdk5NCB_7iMEfk5e72efoQzeb3j9PrWWS4ynzEJTeSSWQWIJFWSmnXqbUiYQZMoQqdqNQom6mEhSDFWvLMCNAQ80IZEwKPyOX-bts1nz06n29KZ7CqdI1N73ImQ06uVJr8L82kYFLEUgSp2EtN1zjXYZG3XbnR3S5nkH93n__pPgBpvu8-GMeHH_16g_bX9lM2_wJClYJB</recordid><startdate>20151127</startdate><enddate>20151127</enddate><creator>Sun, Xing Nan</creator><creator>Kim, Lee Yeong</creator><creator>Zhao, Bum Suk</creator><creator>Chung, Doo Soo</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20151127</creationdate><title>Rotational-State-Dependent Dispersion of Molecules by Pulsed Optical Standing Waves</title><author>Sun, Xing Nan ; Kim, Lee Yeong ; Zhao, Bum Suk ; Chung, Doo Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-383c818e1d0048d888db5dd641c0cf9fa495c9d7941003fb837c60a023f9cc223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computer simulation</topic><topic>Dipoles</topic><topic>Dispersions</topic><topic>Mathematical models</topic><topic>Rotational states</topic><topic>Standing waves</topic><topic>Transverse acceleration</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xing Nan</creatorcontrib><creatorcontrib>Kim, Lee Yeong</creatorcontrib><creatorcontrib>Zhao, Bum Suk</creatorcontrib><creatorcontrib>Chung, Doo Soo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xing Nan</au><au>Kim, Lee Yeong</au><au>Zhao, Bum Suk</au><au>Chung, Doo Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotational-State-Dependent Dispersion of Molecules by Pulsed Optical Standing Waves</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2015-11-27</date><risdate>2015</risdate><volume>115</volume><issue>22</issue><spage>223001</spage><epage>223001</epage><pages>223001-223001</pages><artnum>223001</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We report on the rotational-state-dependent, transverse acceleration of CS_{2} molecules affected by pulsed optical standing waves. The steep gradient of the standing wave potential imparts far stronger dipole forces on the molecules than propagating pulses do. Moreover, large changes in the transverse velocities (i.e., up to 80  m/s) obtained with the standing waves are well reproduced in numerical simulations using the effective polarizability that depends on the molecular rotational states. Our analysis based on the rotational-state-dependent effective polarizability can therefore serve as a basis for developing a new technique of state selection for both polar and nonpolar molecules.</abstract><cop>United States</cop><pmid>26650301</pmid><doi>10.1103/PhysRevLett.115.223001</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2015-11, Vol.115 (22), p.223001-223001, Article 223001
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1826639954
source American Physical Society Journals
subjects Computer simulation
Dipoles
Dispersions
Mathematical models
Rotational states
Standing waves
Transverse acceleration
Wave propagation
title Rotational-State-Dependent Dispersion of Molecules by Pulsed Optical Standing Waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotational-State-Dependent%20Dispersion%20of%20Molecules%20by%20Pulsed%20Optical%20Standing%20Waves&rft.jtitle=Physical%20review%20letters&rft.au=Sun,%20Xing%20Nan&rft.date=2015-11-27&rft.volume=115&rft.issue=22&rft.spage=223001&rft.epage=223001&rft.pages=223001-223001&rft.artnum=223001&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.115.223001&rft_dat=%3Cproquest_cross%3E1786186286%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786186286&rft_id=info:pmid/26650301&rfr_iscdi=true