Low-Dimensional Non-Rigid Image Registration Using Statistical Deformation Models From Semi-Supervised Training Data
Accurate and robust image registration is a fundamental task in medical image analysis applications, and requires non-rigid transformations with a large number of degrees of freedom. Statistical deformation models (SDMs) attempt to learn the distribution of non-rigid deformations, and can be used bo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2015-07, Vol.34 (7), p.1522-1532 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Accurate and robust image registration is a fundamental task in medical image analysis applications, and requires non-rigid transformations with a large number of degrees of freedom. Statistical deformation models (SDMs) attempt to learn the distribution of non-rigid deformations, and can be used both to reduce the transformation dimensionality and to constrain the registration process. However, high-dimensional SDMs are difficult to train given orders of magnitude fewer training samples. In this paper, we utilize both a small set of annotated imaging data and a large set of unlabeled data to effectively learn an SDM of non-rigid transformations in a semi-supervised training (SST) framework. We demonstrate results applying this framework towards inter-subject registration of skull-stripped, magnetic resonance (MR) brain images. Our approach makes use of 39 labeled MR datasets to create a set of supervised registrations, which we augment with a set of over 1200 unsupervised registrations using unlabeled MRIs. Through leave-one-out cross validation, we show that SST of a non-rigid SDM results in a robust registration algorithm with significantly improved accuracy compared to standard, intensity-based registration, and does so with a 99% reduction in transformation dimensionality. |
---|---|
ISSN: | 0278-0062 1558-254X 1558-254X |
DOI: | 10.1109/TMI.2015.2404572 |