Cell spreading as a hydrodynamic process

Many cell types have the ability to move themselves by crawling on extra-cellular matrices. Although cell motility is governed by actin and myosin filament assembly, the pattern of the movement follows the physical properties of the network ensemble average. The first step of motility, cell spreadin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2010-08, Vol.6 (19), p.4788-4799
Hauptverfasser: Fardin, M. A, Rossier, O. M, Rangamani, P, Avigan, P. D, Gauthier, N. C, Vonnegut, W, Mathur, A, Hone, J, Iyengar, R, Sheetz, M. P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4799
container_issue 19
container_start_page 4788
container_title Soft matter
container_volume 6
creator Fardin, M. A
Rossier, O. M
Rangamani, P
Avigan, P. D
Gauthier, N. C
Vonnegut, W
Mathur, A
Hone, J
Iyengar, R
Sheetz, M. P
description Many cell types have the ability to move themselves by crawling on extra-cellular matrices. Although cell motility is governed by actin and myosin filament assembly, the pattern of the movement follows the physical properties of the network ensemble average. The first step of motility, cell spreading on matrix substrates, involves a transition from round cells in suspension to polarized cells on substrates. Here we show that the spreading dynamics on 2D surfaces can be described as a hydrodynamic process. In particular, we show that the transition from isotropic spreading at early time to anisotropic spreading is reminiscent of the fingering instability observed in many spreading fluids. During cell spreading, the main driving force is the polymerization of actin filaments that push the membrane forward. From the equilibrium between the membrane force and the cytoskeleton, we derive a first order expression of the polymerization stress that reproduces the observed behavior. Our model also allows an interpretation of the effects of pharmacological agents altering the polymerization of actin. In particular we describe the influence of Cytochalasin D on the nucleation of the fingering instability. We show that the cell spreading dynamics on 2D surfaces can be described as a hydrodynamic process.
doi_str_mv 10.1039/c0sm00252f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826576766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826576766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-5936d9b9ab5269112bd3fc500d1a0e59a18ba623a5c14776788c1675fb7124a83</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMotlYv3pX1VoTVTLL5OkrxCwpeFLyFbJLVlW53zXQP_e9daa148TQD7zdvHo-QU6BXQLm59hQbSplg1R4ZgyqKXOpC7-92_joiR4gflHJdgDwkI8YN1VLxMZnO4mKRYZeiC_XyLXOYuex9HVIb1kvX1D7rUusj4jE5qNwC48l2TsjL3e3z7CGfP90_zm7muecKVrkwXAZTGlcKJg0AKwOvvKA0gKNRGAe6dJJxJzwUSkmltQepRFUqYIXTfEKmG9_h72cfcWWbGv0Q0i1j26MFzaQY7qQc0MsN6lOLmGJlu1Q3Lq0tUPvdjP1tZoDPt7592cSwQ3-qGICzDZDQ79Q_Bhf_6bYLFf8Cf01xyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826576766</pqid></control><display><type>article</type><title>Cell spreading as a hydrodynamic process</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Fardin, M. A ; Rossier, O. M ; Rangamani, P ; Avigan, P. D ; Gauthier, N. C ; Vonnegut, W ; Mathur, A ; Hone, J ; Iyengar, R ; Sheetz, M. P</creator><creatorcontrib>Fardin, M. A ; Rossier, O. M ; Rangamani, P ; Avigan, P. D ; Gauthier, N. C ; Vonnegut, W ; Mathur, A ; Hone, J ; Iyengar, R ; Sheetz, M. P</creatorcontrib><description>Many cell types have the ability to move themselves by crawling on extra-cellular matrices. Although cell motility is governed by actin and myosin filament assembly, the pattern of the movement follows the physical properties of the network ensemble average. The first step of motility, cell spreading on matrix substrates, involves a transition from round cells in suspension to polarized cells on substrates. Here we show that the spreading dynamics on 2D surfaces can be described as a hydrodynamic process. In particular, we show that the transition from isotropic spreading at early time to anisotropic spreading is reminiscent of the fingering instability observed in many spreading fluids. During cell spreading, the main driving force is the polymerization of actin filaments that push the membrane forward. From the equilibrium between the membrane force and the cytoskeleton, we derive a first order expression of the polymerization stress that reproduces the observed behavior. Our model also allows an interpretation of the effects of pharmacological agents altering the polymerization of actin. In particular we describe the influence of Cytochalasin D on the nucleation of the fingering instability. We show that the cell spreading dynamics on 2D surfaces can be described as a hydrodynamic process.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c0sm00252f</identifier><identifier>PMID: 23908673</identifier><language>eng</language><publisher>England</publisher><ispartof>Soft matter, 2010-08, Vol.6 (19), p.4788-4799</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-5936d9b9ab5269112bd3fc500d1a0e59a18ba623a5c14776788c1675fb7124a83</citedby><cites>FETCH-LOGICAL-c371t-5936d9b9ab5269112bd3fc500d1a0e59a18ba623a5c14776788c1675fb7124a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23908673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fardin, M. A</creatorcontrib><creatorcontrib>Rossier, O. M</creatorcontrib><creatorcontrib>Rangamani, P</creatorcontrib><creatorcontrib>Avigan, P. D</creatorcontrib><creatorcontrib>Gauthier, N. C</creatorcontrib><creatorcontrib>Vonnegut, W</creatorcontrib><creatorcontrib>Mathur, A</creatorcontrib><creatorcontrib>Hone, J</creatorcontrib><creatorcontrib>Iyengar, R</creatorcontrib><creatorcontrib>Sheetz, M. P</creatorcontrib><title>Cell spreading as a hydrodynamic process</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Many cell types have the ability to move themselves by crawling on extra-cellular matrices. Although cell motility is governed by actin and myosin filament assembly, the pattern of the movement follows the physical properties of the network ensemble average. The first step of motility, cell spreading on matrix substrates, involves a transition from round cells in suspension to polarized cells on substrates. Here we show that the spreading dynamics on 2D surfaces can be described as a hydrodynamic process. In particular, we show that the transition from isotropic spreading at early time to anisotropic spreading is reminiscent of the fingering instability observed in many spreading fluids. During cell spreading, the main driving force is the polymerization of actin filaments that push the membrane forward. From the equilibrium between the membrane force and the cytoskeleton, we derive a first order expression of the polymerization stress that reproduces the observed behavior. Our model also allows an interpretation of the effects of pharmacological agents altering the polymerization of actin. In particular we describe the influence of Cytochalasin D on the nucleation of the fingering instability. We show that the cell spreading dynamics on 2D surfaces can be described as a hydrodynamic process.</description><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMotlYv3pX1VoTVTLL5OkrxCwpeFLyFbJLVlW53zXQP_e9daa148TQD7zdvHo-QU6BXQLm59hQbSplg1R4ZgyqKXOpC7-92_joiR4gflHJdgDwkI8YN1VLxMZnO4mKRYZeiC_XyLXOYuex9HVIb1kvX1D7rUusj4jE5qNwC48l2TsjL3e3z7CGfP90_zm7muecKVrkwXAZTGlcKJg0AKwOvvKA0gKNRGAe6dJJxJzwUSkmltQepRFUqYIXTfEKmG9_h72cfcWWbGv0Q0i1j26MFzaQY7qQc0MsN6lOLmGJlu1Q3Lq0tUPvdjP1tZoDPt7592cSwQ3-qGICzDZDQ79Q_Bhf_6bYLFf8Cf01xyg</recordid><startdate>20100810</startdate><enddate>20100810</enddate><creator>Fardin, M. A</creator><creator>Rossier, O. M</creator><creator>Rangamani, P</creator><creator>Avigan, P. D</creator><creator>Gauthier, N. C</creator><creator>Vonnegut, W</creator><creator>Mathur, A</creator><creator>Hone, J</creator><creator>Iyengar, R</creator><creator>Sheetz, M. P</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100810</creationdate><title>Cell spreading as a hydrodynamic process</title><author>Fardin, M. A ; Rossier, O. M ; Rangamani, P ; Avigan, P. D ; Gauthier, N. C ; Vonnegut, W ; Mathur, A ; Hone, J ; Iyengar, R ; Sheetz, M. P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-5936d9b9ab5269112bd3fc500d1a0e59a18ba623a5c14776788c1675fb7124a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fardin, M. A</creatorcontrib><creatorcontrib>Rossier, O. M</creatorcontrib><creatorcontrib>Rangamani, P</creatorcontrib><creatorcontrib>Avigan, P. D</creatorcontrib><creatorcontrib>Gauthier, N. C</creatorcontrib><creatorcontrib>Vonnegut, W</creatorcontrib><creatorcontrib>Mathur, A</creatorcontrib><creatorcontrib>Hone, J</creatorcontrib><creatorcontrib>Iyengar, R</creatorcontrib><creatorcontrib>Sheetz, M. P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fardin, M. A</au><au>Rossier, O. M</au><au>Rangamani, P</au><au>Avigan, P. D</au><au>Gauthier, N. C</au><au>Vonnegut, W</au><au>Mathur, A</au><au>Hone, J</au><au>Iyengar, R</au><au>Sheetz, M. P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell spreading as a hydrodynamic process</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2010-08-10</date><risdate>2010</risdate><volume>6</volume><issue>19</issue><spage>4788</spage><epage>4799</epage><pages>4788-4799</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Many cell types have the ability to move themselves by crawling on extra-cellular matrices. Although cell motility is governed by actin and myosin filament assembly, the pattern of the movement follows the physical properties of the network ensemble average. The first step of motility, cell spreading on matrix substrates, involves a transition from round cells in suspension to polarized cells on substrates. Here we show that the spreading dynamics on 2D surfaces can be described as a hydrodynamic process. In particular, we show that the transition from isotropic spreading at early time to anisotropic spreading is reminiscent of the fingering instability observed in many spreading fluids. During cell spreading, the main driving force is the polymerization of actin filaments that push the membrane forward. From the equilibrium between the membrane force and the cytoskeleton, we derive a first order expression of the polymerization stress that reproduces the observed behavior. Our model also allows an interpretation of the effects of pharmacological agents altering the polymerization of actin. In particular we describe the influence of Cytochalasin D on the nucleation of the fingering instability. We show that the cell spreading dynamics on 2D surfaces can be described as a hydrodynamic process.</abstract><cop>England</cop><pmid>23908673</pmid><doi>10.1039/c0sm00252f</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2010-08, Vol.6 (19), p.4788-4799
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_1826576766
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
title Cell spreading as a hydrodynamic process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T09%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20spreading%20as%20a%20hydrodynamic%20process&rft.jtitle=Soft%20matter&rft.au=Fardin,%20M.%20A&rft.date=2010-08-10&rft.volume=6&rft.issue=19&rft.spage=4788&rft.epage=4799&rft.pages=4788-4799&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c0sm00252f&rft_dat=%3Cproquest_cross%3E1826576766%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826576766&rft_id=info:pmid/23908673&rfr_iscdi=true