Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions
In this work, a meshless scheme is presented for the fast simulation of multi-dimensional wave problems. The present method is rather simple and straightforward. The Houbolt method is used to eliminate the time dependence of spatial variables. Then the original wave problem is converted into equival...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2016-08, Vol.72 (3), p.555-567 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 567 |
---|---|
container_issue | 3 |
container_start_page | 555 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 72 |
creator | Lin, Ji Chen, C.S. Liu, Chein-Shan Lu, Jun |
description | In this work, a meshless scheme is presented for the fast simulation of multi-dimensional wave problems. The present method is rather simple and straightforward. The Houbolt method is used to eliminate the time dependence of spatial variables. Then the original wave problem is converted into equivalent systems of modified Helmholtz equations. The sparse scheme of the method of fundamental solutions in combination with the localized method of approximate particular solutions is employed for efficient implementation of spatial variables. To demonstrate the effectiveness and simplicity of this new approach, three numerical examples have been assessed with excellent performance. |
doi_str_mv | 10.1016/j.camwa.2016.05.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825568766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089812211630284X</els_id><sourcerecordid>1825568766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-71fd25f242378daee43a3f5b5113f62fc0503f0e63baa1e5e0a11f83536c579b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1g8siT4o07cgQFVFJAqscBsOc5ZdZWPknNa9d_jUGam9-50z6u7l5B7znLOePG4y51tjzYXqcmZypNckBnXpczKotCXZMb0UmdcCH5NbhB3jLGFFGxGurXFSDG0Y2Nj6Dvae5rqGLI6tNBhGtmGHu0B6H7oqwZapNWJxi1Q3NsBk7gttDBx07CFuO3rqfNjV9tkEROPfTNO7nhLrrxtEO7-dE6-1i-fq7ds8_H6vnreZE5qHrOS-1ooLxZClrq2AAtppVeV4lz6QnjHFJOeQSErazkoYJZzr6WShVPlspJz8nD2TUd_j4DRtAEdNI3toB_RcC2UKnQKJ63K86obesQBvNkPobXDyXBmpnTNzvyma6Z0DVMmSaKezhSkLw4BBoMuQOegDgO4aOo-_Mv_APXlhf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825568766</pqid></control><display><type>article</type><title>Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lin, Ji ; Chen, C.S. ; Liu, Chein-Shan ; Lu, Jun</creator><creatorcontrib>Lin, Ji ; Chen, C.S. ; Liu, Chein-Shan ; Lu, Jun</creatorcontrib><description>In this work, a meshless scheme is presented for the fast simulation of multi-dimensional wave problems. The present method is rather simple and straightforward. The Houbolt method is used to eliminate the time dependence of spatial variables. Then the original wave problem is converted into equivalent systems of modified Helmholtz equations. The sparse scheme of the method of fundamental solutions in combination with the localized method of approximate particular solutions is employed for efficient implementation of spatial variables. To demonstrate the effectiveness and simplicity of this new approach, three numerical examples have been assessed with excellent performance.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2016.05.016</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Computer simulation ; Equivalence ; Fast simulation ; Finite element method ; Helmholtz equations ; Localized method of approximate particular solutions ; Mathematical analysis ; Mathematical models ; Method of fundamental solutions ; Modified Helmholtz equation ; Sparse scheme ; Time dependence ; Wave propagation</subject><ispartof>Computers & mathematics with applications (1987), 2016-08, Vol.72 (3), p.555-567</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-71fd25f242378daee43a3f5b5113f62fc0503f0e63baa1e5e0a11f83536c579b3</citedby><cites>FETCH-LOGICAL-c381t-71fd25f242378daee43a3f5b5113f62fc0503f0e63baa1e5e0a11f83536c579b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2016.05.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lin, Ji</creatorcontrib><creatorcontrib>Chen, C.S.</creatorcontrib><creatorcontrib>Liu, Chein-Shan</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><title>Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions</title><title>Computers & mathematics with applications (1987)</title><description>In this work, a meshless scheme is presented for the fast simulation of multi-dimensional wave problems. The present method is rather simple and straightforward. The Houbolt method is used to eliminate the time dependence of spatial variables. Then the original wave problem is converted into equivalent systems of modified Helmholtz equations. The sparse scheme of the method of fundamental solutions in combination with the localized method of approximate particular solutions is employed for efficient implementation of spatial variables. To demonstrate the effectiveness and simplicity of this new approach, three numerical examples have been assessed with excellent performance.</description><subject>Approximation</subject><subject>Computer simulation</subject><subject>Equivalence</subject><subject>Fast simulation</subject><subject>Finite element method</subject><subject>Helmholtz equations</subject><subject>Localized method of approximate particular solutions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Method of fundamental solutions</subject><subject>Modified Helmholtz equation</subject><subject>Sparse scheme</subject><subject>Time dependence</subject><subject>Wave propagation</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1g8siT4o07cgQFVFJAqscBsOc5ZdZWPknNa9d_jUGam9-50z6u7l5B7znLOePG4y51tjzYXqcmZypNckBnXpczKotCXZMb0UmdcCH5NbhB3jLGFFGxGurXFSDG0Y2Nj6Dvae5rqGLI6tNBhGtmGHu0B6H7oqwZapNWJxi1Q3NsBk7gttDBx07CFuO3rqfNjV9tkEROPfTNO7nhLrrxtEO7-dE6-1i-fq7ds8_H6vnreZE5qHrOS-1ooLxZClrq2AAtppVeV4lz6QnjHFJOeQSErazkoYJZzr6WShVPlspJz8nD2TUd_j4DRtAEdNI3toB_RcC2UKnQKJ63K86obesQBvNkPobXDyXBmpnTNzvyma6Z0DVMmSaKezhSkLw4BBoMuQOegDgO4aOo-_Mv_APXlhf0</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Lin, Ji</creator><creator>Chen, C.S.</creator><creator>Liu, Chein-Shan</creator><creator>Lu, Jun</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201608</creationdate><title>Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions</title><author>Lin, Ji ; Chen, C.S. ; Liu, Chein-Shan ; Lu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-71fd25f242378daee43a3f5b5113f62fc0503f0e63baa1e5e0a11f83536c579b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Computer simulation</topic><topic>Equivalence</topic><topic>Fast simulation</topic><topic>Finite element method</topic><topic>Helmholtz equations</topic><topic>Localized method of approximate particular solutions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Method of fundamental solutions</topic><topic>Modified Helmholtz equation</topic><topic>Sparse scheme</topic><topic>Time dependence</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Ji</creatorcontrib><creatorcontrib>Chen, C.S.</creatorcontrib><creatorcontrib>Liu, Chein-Shan</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Ji</au><au>Chen, C.S.</au><au>Liu, Chein-Shan</au><au>Lu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2016-08</date><risdate>2016</risdate><volume>72</volume><issue>3</issue><spage>555</spage><epage>567</epage><pages>555-567</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this work, a meshless scheme is presented for the fast simulation of multi-dimensional wave problems. The present method is rather simple and straightforward. The Houbolt method is used to eliminate the time dependence of spatial variables. Then the original wave problem is converted into equivalent systems of modified Helmholtz equations. The sparse scheme of the method of fundamental solutions in combination with the localized method of approximate particular solutions is employed for efficient implementation of spatial variables. To demonstrate the effectiveness and simplicity of this new approach, three numerical examples have been assessed with excellent performance.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2016.05.016</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2016-08, Vol.72 (3), p.555-567 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825568766 |
source | ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | Approximation Computer simulation Equivalence Fast simulation Finite element method Helmholtz equations Localized method of approximate particular solutions Mathematical analysis Mathematical models Method of fundamental solutions Modified Helmholtz equation Sparse scheme Time dependence Wave propagation |
title | Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20simulation%20of%20multi-dimensional%20wave%20problems%20by%20the%20sparse%20scheme%20of%20the%20method%20of%20fundamental%20solutions&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Lin,%20Ji&rft.date=2016-08&rft.volume=72&rft.issue=3&rft.spage=555&rft.epage=567&rft.pages=555-567&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2016.05.016&rft_dat=%3Cproquest_cross%3E1825568766%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825568766&rft_id=info:pmid/&rft_els_id=S089812211630284X&rfr_iscdi=true |