Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions

In this work, a meshless scheme is presented for the fast simulation of multi-dimensional wave problems. The present method is rather simple and straightforward. The Houbolt method is used to eliminate the time dependence of spatial variables. Then the original wave problem is converted into equival...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2016-08, Vol.72 (3), p.555-567
Hauptverfasser: Lin, Ji, Chen, C.S., Liu, Chein-Shan, Lu, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 567
container_issue 3
container_start_page 555
container_title Computers & mathematics with applications (1987)
container_volume 72
creator Lin, Ji
Chen, C.S.
Liu, Chein-Shan
Lu, Jun
description In this work, a meshless scheme is presented for the fast simulation of multi-dimensional wave problems. The present method is rather simple and straightforward. The Houbolt method is used to eliminate the time dependence of spatial variables. Then the original wave problem is converted into equivalent systems of modified Helmholtz equations. The sparse scheme of the method of fundamental solutions in combination with the localized method of approximate particular solutions is employed for efficient implementation of spatial variables. To demonstrate the effectiveness and simplicity of this new approach, three numerical examples have been assessed with excellent performance.
doi_str_mv 10.1016/j.camwa.2016.05.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825568766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089812211630284X</els_id><sourcerecordid>1825568766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-71fd25f242378daee43a3f5b5113f62fc0503f0e63baa1e5e0a11f83536c579b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1g8siT4o07cgQFVFJAqscBsOc5ZdZWPknNa9d_jUGam9-50z6u7l5B7znLOePG4y51tjzYXqcmZypNckBnXpczKotCXZMb0UmdcCH5NbhB3jLGFFGxGurXFSDG0Y2Nj6Dvae5rqGLI6tNBhGtmGHu0B6H7oqwZapNWJxi1Q3NsBk7gttDBx07CFuO3rqfNjV9tkEROPfTNO7nhLrrxtEO7-dE6-1i-fq7ds8_H6vnreZE5qHrOS-1ooLxZClrq2AAtppVeV4lz6QnjHFJOeQSErazkoYJZzr6WShVPlspJz8nD2TUd_j4DRtAEdNI3toB_RcC2UKnQKJ63K86obesQBvNkPobXDyXBmpnTNzvyma6Z0DVMmSaKezhSkLw4BBoMuQOegDgO4aOo-_Mv_APXlhf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825568766</pqid></control><display><type>article</type><title>Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lin, Ji ; Chen, C.S. ; Liu, Chein-Shan ; Lu, Jun</creator><creatorcontrib>Lin, Ji ; Chen, C.S. ; Liu, Chein-Shan ; Lu, Jun</creatorcontrib><description>In this work, a meshless scheme is presented for the fast simulation of multi-dimensional wave problems. The present method is rather simple and straightforward. The Houbolt method is used to eliminate the time dependence of spatial variables. Then the original wave problem is converted into equivalent systems of modified Helmholtz equations. The sparse scheme of the method of fundamental solutions in combination with the localized method of approximate particular solutions is employed for efficient implementation of spatial variables. To demonstrate the effectiveness and simplicity of this new approach, three numerical examples have been assessed with excellent performance.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2016.05.016</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Computer simulation ; Equivalence ; Fast simulation ; Finite element method ; Helmholtz equations ; Localized method of approximate particular solutions ; Mathematical analysis ; Mathematical models ; Method of fundamental solutions ; Modified Helmholtz equation ; Sparse scheme ; Time dependence ; Wave propagation</subject><ispartof>Computers &amp; mathematics with applications (1987), 2016-08, Vol.72 (3), p.555-567</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-71fd25f242378daee43a3f5b5113f62fc0503f0e63baa1e5e0a11f83536c579b3</citedby><cites>FETCH-LOGICAL-c381t-71fd25f242378daee43a3f5b5113f62fc0503f0e63baa1e5e0a11f83536c579b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2016.05.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lin, Ji</creatorcontrib><creatorcontrib>Chen, C.S.</creatorcontrib><creatorcontrib>Liu, Chein-Shan</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><title>Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions</title><title>Computers &amp; mathematics with applications (1987)</title><description>In this work, a meshless scheme is presented for the fast simulation of multi-dimensional wave problems. The present method is rather simple and straightforward. The Houbolt method is used to eliminate the time dependence of spatial variables. Then the original wave problem is converted into equivalent systems of modified Helmholtz equations. The sparse scheme of the method of fundamental solutions in combination with the localized method of approximate particular solutions is employed for efficient implementation of spatial variables. To demonstrate the effectiveness and simplicity of this new approach, three numerical examples have been assessed with excellent performance.</description><subject>Approximation</subject><subject>Computer simulation</subject><subject>Equivalence</subject><subject>Fast simulation</subject><subject>Finite element method</subject><subject>Helmholtz equations</subject><subject>Localized method of approximate particular solutions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Method of fundamental solutions</subject><subject>Modified Helmholtz equation</subject><subject>Sparse scheme</subject><subject>Time dependence</subject><subject>Wave propagation</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1g8siT4o07cgQFVFJAqscBsOc5ZdZWPknNa9d_jUGam9-50z6u7l5B7znLOePG4y51tjzYXqcmZypNckBnXpczKotCXZMb0UmdcCH5NbhB3jLGFFGxGurXFSDG0Y2Nj6Dvae5rqGLI6tNBhGtmGHu0B6H7oqwZapNWJxi1Q3NsBk7gttDBx07CFuO3rqfNjV9tkEROPfTNO7nhLrrxtEO7-dE6-1i-fq7ds8_H6vnreZE5qHrOS-1ooLxZClrq2AAtppVeV4lz6QnjHFJOeQSErazkoYJZzr6WShVPlspJz8nD2TUd_j4DRtAEdNI3toB_RcC2UKnQKJ63K86obesQBvNkPobXDyXBmpnTNzvyma6Z0DVMmSaKezhSkLw4BBoMuQOegDgO4aOo-_Mv_APXlhf0</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Lin, Ji</creator><creator>Chen, C.S.</creator><creator>Liu, Chein-Shan</creator><creator>Lu, Jun</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201608</creationdate><title>Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions</title><author>Lin, Ji ; Chen, C.S. ; Liu, Chein-Shan ; Lu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-71fd25f242378daee43a3f5b5113f62fc0503f0e63baa1e5e0a11f83536c579b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Computer simulation</topic><topic>Equivalence</topic><topic>Fast simulation</topic><topic>Finite element method</topic><topic>Helmholtz equations</topic><topic>Localized method of approximate particular solutions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Method of fundamental solutions</topic><topic>Modified Helmholtz equation</topic><topic>Sparse scheme</topic><topic>Time dependence</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Ji</creatorcontrib><creatorcontrib>Chen, C.S.</creatorcontrib><creatorcontrib>Liu, Chein-Shan</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Ji</au><au>Chen, C.S.</au><au>Liu, Chein-Shan</au><au>Lu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2016-08</date><risdate>2016</risdate><volume>72</volume><issue>3</issue><spage>555</spage><epage>567</epage><pages>555-567</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this work, a meshless scheme is presented for the fast simulation of multi-dimensional wave problems. The present method is rather simple and straightforward. The Houbolt method is used to eliminate the time dependence of spatial variables. Then the original wave problem is converted into equivalent systems of modified Helmholtz equations. The sparse scheme of the method of fundamental solutions in combination with the localized method of approximate particular solutions is employed for efficient implementation of spatial variables. To demonstrate the effectiveness and simplicity of this new approach, three numerical examples have been assessed with excellent performance.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2016.05.016</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2016-08, Vol.72 (3), p.555-567
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_1825568766
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Approximation
Computer simulation
Equivalence
Fast simulation
Finite element method
Helmholtz equations
Localized method of approximate particular solutions
Mathematical analysis
Mathematical models
Method of fundamental solutions
Modified Helmholtz equation
Sparse scheme
Time dependence
Wave propagation
title Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20simulation%20of%20multi-dimensional%20wave%20problems%20by%20the%20sparse%20scheme%20of%20the%20method%20of%20fundamental%20solutions&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Lin,%20Ji&rft.date=2016-08&rft.volume=72&rft.issue=3&rft.spage=555&rft.epage=567&rft.pages=555-567&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2016.05.016&rft_dat=%3Cproquest_cross%3E1825568766%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825568766&rft_id=info:pmid/&rft_els_id=S089812211630284X&rfr_iscdi=true