Additive manufacturing of nickel-based superalloy Inconel 718 by selective electron beam melting: Processing window and microstructure

Cube-shaped IN718 samples were produced by selective electron beam melting (SEBM) with varying beam power, deflection speed, and beam spot size. Process parameter windows were identified where fully dense samples are obtained with no surface unevenness. High deflection speeds were demonstrated to re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2014-09, Vol.29 (17), p.1987-1996
Hauptverfasser: Helmer, Harald Ernst, Körner, Carolin, Singer, Robert Friedrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1996
container_issue 17
container_start_page 1987
container_title Journal of materials research
container_volume 29
creator Helmer, Harald Ernst
Körner, Carolin
Singer, Robert Friedrich
description Cube-shaped IN718 samples were produced by selective electron beam melting (SEBM) with varying beam power, deflection speed, and beam spot size. Process parameter windows were identified where fully dense samples are obtained with no surface unevenness. High deflection speeds were demonstrated to result in smaller demand of area energy. This result is explained by the reduced time for heat dissipation into the substrate during hatching. The grain structure was strongly affected by SEBM process parameters. Under certain conditions, epitaxial growth over many layers and well-developed columnar grain structures were obtained with a polycrystalline substrate plate. A more defocused beam led to a lower melt pool temperature and shallower melt pool geometry where maximum temperature gradients and solidification rates were more or less in parallel with the building direction and primary dendrite arm orientation. These conditions help to suppress grain nucleation ahead of the nucleation front as vigorous melt movement, fragmentation of dendrites, and tertiary arm growth are suppressed.
doi_str_mv 10.1557/jmr.2014.192
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825567211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2014_192</cupid><sourcerecordid>3435730341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-6436d9f36ac7e1e5655c3a1ed5b8dd0092848fe7644af6c59715ec54c2034f153</originalsourceid><addsrcrecordid>eNqFkc9O3DAQh60KpG6BWx_AEpcemq3t-E_SG0JAkZDKAc6WY0-Qt4692ElX-wJ9bhKWQ1VV4uQ5fPONZ34IfaZkTYVQ3zZDXjNC-Zq27ANaMcJ5JWomj9CKNA2vWEv5R_SplA0hVBDFV-jPhXN-9L8BDyZOvbHjlH18wqnH0dtfEKrOFHC4TFvIJoS0x7fRpggBK9rgbo8LBLCvhtcip4g7MAMeIIyz6Tu-z8lCKYt156NLO2yiw4O3OZUxT8tEOEXHvQkFzt7eE_R4ffVw-aO6-3lze3lxV1lB2rGSvJau7WtprAIKQgpha0PBia5xjpCWNbzpQUnOTS-taBUVYAW3jNS8p6I-QV8O3m1OzxOUUQ--WAjBREhT0bRhQkjFKJ3R83_QTZpynH-nqZBMKSlrNlNfD9SyTcnQ6232g8l7TYleQtFzKHoJRc-hzHh1wMt2OTPkv6T_59dvejN02bsneKfhBTgXn3c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562776632</pqid></control><display><type>article</type><title>Additive manufacturing of nickel-based superalloy Inconel 718 by selective electron beam melting: Processing window and microstructure</title><source>Springer Journals</source><source>Cambridge (BGSU)</source><creator>Helmer, Harald Ernst ; Körner, Carolin ; Singer, Robert Friedrich</creator><creatorcontrib>Helmer, Harald Ernst ; Körner, Carolin ; Singer, Robert Friedrich</creatorcontrib><description>Cube-shaped IN718 samples were produced by selective electron beam melting (SEBM) with varying beam power, deflection speed, and beam spot size. Process parameter windows were identified where fully dense samples are obtained with no surface unevenness. High deflection speeds were demonstrated to result in smaller demand of area energy. This result is explained by the reduced time for heat dissipation into the substrate during hatching. The grain structure was strongly affected by SEBM process parameters. Under certain conditions, epitaxial growth over many layers and well-developed columnar grain structures were obtained with a polycrystalline substrate plate. A more defocused beam led to a lower melt pool temperature and shallower melt pool geometry where maximum temperature gradients and solidification rates were more or less in parallel with the building direction and primary dendrite arm orientation. These conditions help to suppress grain nucleation ahead of the nucleation front as vigorous melt movement, fragmentation of dendrites, and tertiary arm growth are suppressed.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2014.192</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Additive manufacturing ; Applied and Technical Physics ; Biomaterials ; Deflection ; Dendritic structure ; Density ; Electron beam melting ; Grain structure ; Inorganic Chemistry ; Investigations ; Materials Engineering ; Materials research ; Materials Science ; Melt pools ; Metal ; Nanotechnology ; Nickel base alloys ; Nucleation ; Particle size ; Process parameters ; Superalloys</subject><ispartof>Journal of materials research, 2014-09, Vol.29 (17), p.1987-1996</ispartof><rights>Copyright © Materials Research Society 2014</rights><rights>The Materials Research Society 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-6436d9f36ac7e1e5655c3a1ed5b8dd0092848fe7644af6c59715ec54c2034f153</citedby><cites>FETCH-LOGICAL-c509t-6436d9f36ac7e1e5655c3a1ed5b8dd0092848fe7644af6c59715ec54c2034f153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2014.192$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291414001927/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,41464,42533,51294,55603</link.rule.ids></links><search><creatorcontrib>Helmer, Harald Ernst</creatorcontrib><creatorcontrib>Körner, Carolin</creatorcontrib><creatorcontrib>Singer, Robert Friedrich</creatorcontrib><title>Additive manufacturing of nickel-based superalloy Inconel 718 by selective electron beam melting: Processing window and microstructure</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Cube-shaped IN718 samples were produced by selective electron beam melting (SEBM) with varying beam power, deflection speed, and beam spot size. Process parameter windows were identified where fully dense samples are obtained with no surface unevenness. High deflection speeds were demonstrated to result in smaller demand of area energy. This result is explained by the reduced time for heat dissipation into the substrate during hatching. The grain structure was strongly affected by SEBM process parameters. Under certain conditions, epitaxial growth over many layers and well-developed columnar grain structures were obtained with a polycrystalline substrate plate. A more defocused beam led to a lower melt pool temperature and shallower melt pool geometry where maximum temperature gradients and solidification rates were more or less in parallel with the building direction and primary dendrite arm orientation. These conditions help to suppress grain nucleation ahead of the nucleation front as vigorous melt movement, fragmentation of dendrites, and tertiary arm growth are suppressed.</description><subject>Additive manufacturing</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Deflection</subject><subject>Dendritic structure</subject><subject>Density</subject><subject>Electron beam melting</subject><subject>Grain structure</subject><subject>Inorganic Chemistry</subject><subject>Investigations</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Melt pools</subject><subject>Metal</subject><subject>Nanotechnology</subject><subject>Nickel base alloys</subject><subject>Nucleation</subject><subject>Particle size</subject><subject>Process parameters</subject><subject>Superalloys</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkc9O3DAQh60KpG6BWx_AEpcemq3t-E_SG0JAkZDKAc6WY0-Qt4692ElX-wJ9bhKWQ1VV4uQ5fPONZ34IfaZkTYVQ3zZDXjNC-Zq27ANaMcJ5JWomj9CKNA2vWEv5R_SplA0hVBDFV-jPhXN-9L8BDyZOvbHjlH18wqnH0dtfEKrOFHC4TFvIJoS0x7fRpggBK9rgbo8LBLCvhtcip4g7MAMeIIyz6Tu-z8lCKYt156NLO2yiw4O3OZUxT8tEOEXHvQkFzt7eE_R4ffVw-aO6-3lze3lxV1lB2rGSvJau7WtprAIKQgpha0PBia5xjpCWNbzpQUnOTS-taBUVYAW3jNS8p6I-QV8O3m1OzxOUUQ--WAjBREhT0bRhQkjFKJ3R83_QTZpynH-nqZBMKSlrNlNfD9SyTcnQ6232g8l7TYleQtFzKHoJRc-hzHh1wMt2OTPkv6T_59dvejN02bsneKfhBTgXn3c</recordid><startdate>20140914</startdate><enddate>20140914</enddate><creator>Helmer, Harald Ernst</creator><creator>Körner, Carolin</creator><creator>Singer, Robert Friedrich</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20140914</creationdate><title>Additive manufacturing of nickel-based superalloy Inconel 718 by selective electron beam melting: Processing window and microstructure</title><author>Helmer, Harald Ernst ; Körner, Carolin ; Singer, Robert Friedrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-6436d9f36ac7e1e5655c3a1ed5b8dd0092848fe7644af6c59715ec54c2034f153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Additive manufacturing</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Deflection</topic><topic>Dendritic structure</topic><topic>Density</topic><topic>Electron beam melting</topic><topic>Grain structure</topic><topic>Inorganic Chemistry</topic><topic>Investigations</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Melt pools</topic><topic>Metal</topic><topic>Nanotechnology</topic><topic>Nickel base alloys</topic><topic>Nucleation</topic><topic>Particle size</topic><topic>Process parameters</topic><topic>Superalloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helmer, Harald Ernst</creatorcontrib><creatorcontrib>Körner, Carolin</creatorcontrib><creatorcontrib>Singer, Robert Friedrich</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helmer, Harald Ernst</au><au>Körner, Carolin</au><au>Singer, Robert Friedrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Additive manufacturing of nickel-based superalloy Inconel 718 by selective electron beam melting: Processing window and microstructure</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2014-09-14</date><risdate>2014</risdate><volume>29</volume><issue>17</issue><spage>1987</spage><epage>1996</epage><pages>1987-1996</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>Cube-shaped IN718 samples were produced by selective electron beam melting (SEBM) with varying beam power, deflection speed, and beam spot size. Process parameter windows were identified where fully dense samples are obtained with no surface unevenness. High deflection speeds were demonstrated to result in smaller demand of area energy. This result is explained by the reduced time for heat dissipation into the substrate during hatching. The grain structure was strongly affected by SEBM process parameters. Under certain conditions, epitaxial growth over many layers and well-developed columnar grain structures were obtained with a polycrystalline substrate plate. A more defocused beam led to a lower melt pool temperature and shallower melt pool geometry where maximum temperature gradients and solidification rates were more or less in parallel with the building direction and primary dendrite arm orientation. These conditions help to suppress grain nucleation ahead of the nucleation front as vigorous melt movement, fragmentation of dendrites, and tertiary arm growth are suppressed.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2014.192</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2014-09, Vol.29 (17), p.1987-1996
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_miscellaneous_1825567211
source Springer Journals; Cambridge (BGSU)
subjects Additive manufacturing
Applied and Technical Physics
Biomaterials
Deflection
Dendritic structure
Density
Electron beam melting
Grain structure
Inorganic Chemistry
Investigations
Materials Engineering
Materials research
Materials Science
Melt pools
Metal
Nanotechnology
Nickel base alloys
Nucleation
Particle size
Process parameters
Superalloys
title Additive manufacturing of nickel-based superalloy Inconel 718 by selective electron beam melting: Processing window and microstructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A08%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Additive%20manufacturing%20of%20nickel-based%20superalloy%20Inconel%20718%20by%20selective%20electron%20beam%20melting:%20Processing%20window%20and%20microstructure&rft.jtitle=Journal%20of%20materials%20research&rft.au=Helmer,%20Harald%20Ernst&rft.date=2014-09-14&rft.volume=29&rft.issue=17&rft.spage=1987&rft.epage=1996&rft.pages=1987-1996&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2014.192&rft_dat=%3Cproquest_cross%3E3435730341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562776632&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2014_192&rfr_iscdi=true