Modeling RACH Arrivals and Collisions for Human-Type Communication

This letter proposes an analytical model to evaluate the collision probability on the Random-Access CHannel (RACH) in Long-Term Evolution systems as a function of the number of user equipment, the number of available preambles, and the Inter-arrival times of the RACH Requests (IRRs) of the average u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2016-07, Vol.20 (7), p.1417-1420
Hauptverfasser: Foddis, Gianluca, Garroppo, Rosario, Giordano, Stefano, Procissi, Gregorio, Roma, Simone, Topazzi, Simone
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1420
container_issue 7
container_start_page 1417
container_title IEEE communications letters
container_volume 20
creator Foddis, Gianluca
Garroppo, Rosario
Giordano, Stefano
Procissi, Gregorio
Roma, Simone
Topazzi, Simone
description This letter proposes an analytical model to evaluate the collision probability on the Random-Access CHannel (RACH) in Long-Term Evolution systems as a function of the number of user equipment, the number of available preambles, and the Inter-arrival times of the RACH Requests (IRRs) of the average user. The model for the IRR of the average user is obtained from real traffic data captured at the eNodeB of a mobile operator, and is derived by emulating the radio resource control (RRC) state machine for different RRCs Inactivity timer (RRCIT) settings. The results of this letter suggest that when RRCIT is set to a few seconds, a mixture model is more accurate than the Poisson hypothesis both in modeling the IRR and in estimating the RACH performance.
doi_str_mv 10.1109/LCOMM.2016.2560819
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825567115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7463003</ieee_id><sourcerecordid>1825567115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-63eba346d05b7ec9523ecf1a34ab82e8da4d13456ab818816f9865559efd9f713</originalsourceid><addsrcrecordid>eNpdkE9LwzAYh4MoOKdfQC8FL1468yZNmhxnUSdsDGSeQ9YmktE2M1mFfXszNzx4yb_3-YX3fRC6BTwBwPJxXi0XiwnBwCeEcSxAnqERMCZykpbzdMZC5mUpxSW6inGDMRaEwQg9LXxjWtd_Zu_TapZNQ3Dfuo2Z7pus8m3rovN9zKwP2WzodJ-v9luTKl039K7Wu1S9Rhc2RczNaR-jj5fnVTXL58vXt2o6z2tK6C7n1Kw1LXiD2bo0tWSEmtpCetJrQYxodNEALRhPVxACuJWCM8aksY20JdAxejj-uw3-azBxpzoXa9O2ujd-iArSRIyXACyh9__QjR9Cn7pLFKayKJKVRJEjVQcfYzBWbYPrdNgrwOqgVf1qVQet6qQ1he6OIWeM-QuUBacYU_oDQfdyGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1803944558</pqid></control><display><type>article</type><title>Modeling RACH Arrivals and Collisions for Human-Type Communication</title><source>IEEE Electronic Library (IEL)</source><creator>Foddis, Gianluca ; Garroppo, Rosario ; Giordano, Stefano ; Procissi, Gregorio ; Roma, Simone ; Topazzi, Simone</creator><creatorcontrib>Foddis, Gianluca ; Garroppo, Rosario ; Giordano, Stefano ; Procissi, Gregorio ; Roma, Simone ; Topazzi, Simone</creatorcontrib><description>This letter proposes an analytical model to evaluate the collision probability on the Random-Access CHannel (RACH) in Long-Term Evolution systems as a function of the number of user equipment, the number of available preambles, and the Inter-arrival times of the RACH Requests (IRRs) of the average user. The model for the IRR of the average user is obtained from real traffic data captured at the eNodeB of a mobile operator, and is derived by emulating the radio resource control (RRC) state machine for different RRCs Inactivity timer (RRCIT) settings. The results of this letter suggest that when RRCIT is set to a few seconds, a mixture model is more accurate than the Poisson hypothesis both in modeling the IRR and in estimating the RACH performance.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2016.2560819</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Channels ; Collisions ; Data models ; Evolution ; Exponential distribution ; Fitting ; Indexes ; Information technology ; Mathematical analysis ; mixture model ; Mixture models ; Mobile communication ; Modelling ; Operators ; RACH collision probability ; radio resource control (RRC) inactivity timer ; random access opportunity (RAO) ; RRC state machine ; Timing devices</subject><ispartof>IEEE communications letters, 2016-07, Vol.20 (7), p.1417-1420</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c323t-63eba346d05b7ec9523ecf1a34ab82e8da4d13456ab818816f9865559efd9f713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7463003$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7463003$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Foddis, Gianluca</creatorcontrib><creatorcontrib>Garroppo, Rosario</creatorcontrib><creatorcontrib>Giordano, Stefano</creatorcontrib><creatorcontrib>Procissi, Gregorio</creatorcontrib><creatorcontrib>Roma, Simone</creatorcontrib><creatorcontrib>Topazzi, Simone</creatorcontrib><title>Modeling RACH Arrivals and Collisions for Human-Type Communication</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>This letter proposes an analytical model to evaluate the collision probability on the Random-Access CHannel (RACH) in Long-Term Evolution systems as a function of the number of user equipment, the number of available preambles, and the Inter-arrival times of the RACH Requests (IRRs) of the average user. The model for the IRR of the average user is obtained from real traffic data captured at the eNodeB of a mobile operator, and is derived by emulating the radio resource control (RRC) state machine for different RRCs Inactivity timer (RRCIT) settings. The results of this letter suggest that when RRCIT is set to a few seconds, a mixture model is more accurate than the Poisson hypothesis both in modeling the IRR and in estimating the RACH performance.</description><subject>Analytical models</subject><subject>Channels</subject><subject>Collisions</subject><subject>Data models</subject><subject>Evolution</subject><subject>Exponential distribution</subject><subject>Fitting</subject><subject>Indexes</subject><subject>Information technology</subject><subject>Mathematical analysis</subject><subject>mixture model</subject><subject>Mixture models</subject><subject>Mobile communication</subject><subject>Modelling</subject><subject>Operators</subject><subject>RACH collision probability</subject><subject>radio resource control (RRC) inactivity timer</subject><subject>random access opportunity (RAO)</subject><subject>RRC state machine</subject><subject>Timing devices</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9LwzAYh4MoOKdfQC8FL1468yZNmhxnUSdsDGSeQ9YmktE2M1mFfXszNzx4yb_3-YX3fRC6BTwBwPJxXi0XiwnBwCeEcSxAnqERMCZykpbzdMZC5mUpxSW6inGDMRaEwQg9LXxjWtd_Zu_TapZNQ3Dfuo2Z7pus8m3rovN9zKwP2WzodJ-v9luTKl039K7Wu1S9Rhc2RczNaR-jj5fnVTXL58vXt2o6z2tK6C7n1Kw1LXiD2bo0tWSEmtpCetJrQYxodNEALRhPVxACuJWCM8aksY20JdAxejj-uw3-azBxpzoXa9O2ujd-iArSRIyXACyh9__QjR9Cn7pLFKayKJKVRJEjVQcfYzBWbYPrdNgrwOqgVf1qVQet6qQ1he6OIWeM-QuUBacYU_oDQfdyGg</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Foddis, Gianluca</creator><creator>Garroppo, Rosario</creator><creator>Giordano, Stefano</creator><creator>Procissi, Gregorio</creator><creator>Roma, Simone</creator><creator>Topazzi, Simone</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20160701</creationdate><title>Modeling RACH Arrivals and Collisions for Human-Type Communication</title><author>Foddis, Gianluca ; Garroppo, Rosario ; Giordano, Stefano ; Procissi, Gregorio ; Roma, Simone ; Topazzi, Simone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-63eba346d05b7ec9523ecf1a34ab82e8da4d13456ab818816f9865559efd9f713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytical models</topic><topic>Channels</topic><topic>Collisions</topic><topic>Data models</topic><topic>Evolution</topic><topic>Exponential distribution</topic><topic>Fitting</topic><topic>Indexes</topic><topic>Information technology</topic><topic>Mathematical analysis</topic><topic>mixture model</topic><topic>Mixture models</topic><topic>Mobile communication</topic><topic>Modelling</topic><topic>Operators</topic><topic>RACH collision probability</topic><topic>radio resource control (RRC) inactivity timer</topic><topic>random access opportunity (RAO)</topic><topic>RRC state machine</topic><topic>Timing devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foddis, Gianluca</creatorcontrib><creatorcontrib>Garroppo, Rosario</creatorcontrib><creatorcontrib>Giordano, Stefano</creatorcontrib><creatorcontrib>Procissi, Gregorio</creatorcontrib><creatorcontrib>Roma, Simone</creatorcontrib><creatorcontrib>Topazzi, Simone</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Foddis, Gianluca</au><au>Garroppo, Rosario</au><au>Giordano, Stefano</au><au>Procissi, Gregorio</au><au>Roma, Simone</au><au>Topazzi, Simone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling RACH Arrivals and Collisions for Human-Type Communication</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>20</volume><issue>7</issue><spage>1417</spage><epage>1420</epage><pages>1417-1420</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>This letter proposes an analytical model to evaluate the collision probability on the Random-Access CHannel (RACH) in Long-Term Evolution systems as a function of the number of user equipment, the number of available preambles, and the Inter-arrival times of the RACH Requests (IRRs) of the average user. The model for the IRR of the average user is obtained from real traffic data captured at the eNodeB of a mobile operator, and is derived by emulating the radio resource control (RRC) state machine for different RRCs Inactivity timer (RRCIT) settings. The results of this letter suggest that when RRCIT is set to a few seconds, a mixture model is more accurate than the Poisson hypothesis both in modeling the IRR and in estimating the RACH performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2016.2560819</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2016-07, Vol.20 (7), p.1417-1420
issn 1089-7798
1558-2558
language eng
recordid cdi_proquest_miscellaneous_1825567115
source IEEE Electronic Library (IEL)
subjects Analytical models
Channels
Collisions
Data models
Evolution
Exponential distribution
Fitting
Indexes
Information technology
Mathematical analysis
mixture model
Mixture models
Mobile communication
Modelling
Operators
RACH collision probability
radio resource control (RRC) inactivity timer
random access opportunity (RAO)
RRC state machine
Timing devices
title Modeling RACH Arrivals and Collisions for Human-Type Communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20RACH%20Arrivals%20and%20Collisions%20for%20Human-Type%20Communication&rft.jtitle=IEEE%20communications%20letters&rft.au=Foddis,%20Gianluca&rft.date=2016-07-01&rft.volume=20&rft.issue=7&rft.spage=1417&rft.epage=1420&rft.pages=1417-1420&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2016.2560819&rft_dat=%3Cproquest_RIE%3E1825567115%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1803944558&rft_id=info:pmid/&rft_ieee_id=7463003&rfr_iscdi=true