Alkali doping strategies for flexible and light-weight Cu2ZnSnSe4 solar cells
In this work we report on the effect of alkali doping via Na and/or K introduction into flexible and light-weight Cu2ZnSnSe4 (CZTSe) solar cells obtained using a sequential process based on the sputtering of metallic stacks and further reactive annealing. Different thicknesses of Cr diffusion barrie...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2016-01, Vol.4 (5), p.1895-1907 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1907 |
---|---|
container_issue | 5 |
container_start_page | 1895 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 4 |
creator | Lopez-Marino, Simon Sanchez, Yudania Espindola-Rodriguez, Moises Alcobe, Xavier Xie, Haibing Neuschitzer, Markus Becerril, Ignacio Giraldo, Sergio Dimitrievska, Mirjana Placidi, Marcel Fourdrinier, Lionel Izquierdo-Roca, Victor Perez-Rodriguez, Alejandro Saucedo, Edgardo |
description | In this work we report on the effect of alkali doping via Na and/or K introduction into flexible and light-weight Cu2ZnSnSe4 (CZTSe) solar cells obtained using a sequential process based on the sputtering of metallic stacks and further reactive annealing. Different thicknesses of Cr diffusion barriers and 50 mu m thick ferritic steel substrates were used. We compare different doping methods: Na-doped Mo targets (MoNa), SLG underneath the flexible substrates, NaF and KF pre-absorber synthesis evaporation (PAS) and post-deposition evaporation (PDT). Additionally, we report on the importance of the Cr barrier and back contact modification to improve solar cell performance. A remarkable enhancement in the absorber grain size and surface morphology occurred especially when using Na via MoNa and PAS. Nevertheless, preliminary experiments led to better results for MoNa doping due to a higher Na content confirmed by TOF-SIMS. K doping via PAS also showed promising results. An increase in the efficiency of solar cells from 2.2% to 4.3% was possible when using a MoNa layer sandwiched between regular Mo layers. The improvement is mainly related to a higher VOC and FF. After performing a detailed Cr and back contact optimization, a record value of 6.1% for flexible CZTSe solar cells was recently obtained using MoNa and a new surface Ge doping. |
doi_str_mv | 10.1039/c5ta09640e |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825566408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808699747</sourcerecordid><originalsourceid>FETCH-LOGICAL-p221t-f3fa424e3642e1d663cf585af56ffbf31b3295f6534e51c9a7b9ad42f8ffe0913</originalsourceid><addsrcrecordid>eNqNkD1PwzAYhC0EElXpwi_wyBLwd-yxivioVMRQWFgqJ3nfEDBJiB3BzycViJlbnhtOp9MRcs7ZJWfSXVU6eeaMYnBEFoJpluXKmeM_b-0pWcX4ymZZxoxzC3K_Dm8-tLTuh7ZraEyjT9C0ECn2I8UAX20ZgPqupqFtXlL2CQfQYhLP3a7bgaKxD36kFYQQz8gJ-hBh9cslebq5fizusu3D7aZYb7NBCJ4ylOiVUCCNEsBrY2SF2mqP2iCWKHkphdNotFSgeeV8XjpfK4EWEZjjckkufnqHsf-YIKb9exsPC3wH_RT33AqtzfyE_UeU2fmJXOXyGw3OX-Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808699747</pqid></control><display><type>article</type><title>Alkali doping strategies for flexible and light-weight Cu2ZnSnSe4 solar cells</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Lopez-Marino, Simon ; Sanchez, Yudania ; Espindola-Rodriguez, Moises ; Alcobe, Xavier ; Xie, Haibing ; Neuschitzer, Markus ; Becerril, Ignacio ; Giraldo, Sergio ; Dimitrievska, Mirjana ; Placidi, Marcel ; Fourdrinier, Lionel ; Izquierdo-Roca, Victor ; Perez-Rodriguez, Alejandro ; Saucedo, Edgardo</creator><creatorcontrib>Lopez-Marino, Simon ; Sanchez, Yudania ; Espindola-Rodriguez, Moises ; Alcobe, Xavier ; Xie, Haibing ; Neuschitzer, Markus ; Becerril, Ignacio ; Giraldo, Sergio ; Dimitrievska, Mirjana ; Placidi, Marcel ; Fourdrinier, Lionel ; Izquierdo-Roca, Victor ; Perez-Rodriguez, Alejandro ; Saucedo, Edgardo</creatorcontrib><description>In this work we report on the effect of alkali doping via Na and/or K introduction into flexible and light-weight Cu2ZnSnSe4 (CZTSe) solar cells obtained using a sequential process based on the sputtering of metallic stacks and further reactive annealing. Different thicknesses of Cr diffusion barriers and 50 mu m thick ferritic steel substrates were used. We compare different doping methods: Na-doped Mo targets (MoNa), SLG underneath the flexible substrates, NaF and KF pre-absorber synthesis evaporation (PAS) and post-deposition evaporation (PDT). Additionally, we report on the importance of the Cr barrier and back contact modification to improve solar cell performance. A remarkable enhancement in the absorber grain size and surface morphology occurred especially when using Na via MoNa and PAS. Nevertheless, preliminary experiments led to better results for MoNa doping due to a higher Na content confirmed by TOF-SIMS. K doping via PAS also showed promising results. An increase in the efficiency of solar cells from 2.2% to 4.3% was possible when using a MoNa layer sandwiched between regular Mo layers. The improvement is mainly related to a higher VOC and FF. After performing a detailed Cr and back contact optimization, a record value of 6.1% for flexible CZTSe solar cells was recently obtained using MoNa and a new surface Ge doping.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c5ta09640e</identifier><language>eng</language><subject>Annealing ; Contact ; Doping ; Evaporation ; PAS ; Photovoltaic cells ; Solar cells ; Substrates</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2016-01, Vol.4 (5), p.1895-1907</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lopez-Marino, Simon</creatorcontrib><creatorcontrib>Sanchez, Yudania</creatorcontrib><creatorcontrib>Espindola-Rodriguez, Moises</creatorcontrib><creatorcontrib>Alcobe, Xavier</creatorcontrib><creatorcontrib>Xie, Haibing</creatorcontrib><creatorcontrib>Neuschitzer, Markus</creatorcontrib><creatorcontrib>Becerril, Ignacio</creatorcontrib><creatorcontrib>Giraldo, Sergio</creatorcontrib><creatorcontrib>Dimitrievska, Mirjana</creatorcontrib><creatorcontrib>Placidi, Marcel</creatorcontrib><creatorcontrib>Fourdrinier, Lionel</creatorcontrib><creatorcontrib>Izquierdo-Roca, Victor</creatorcontrib><creatorcontrib>Perez-Rodriguez, Alejandro</creatorcontrib><creatorcontrib>Saucedo, Edgardo</creatorcontrib><title>Alkali doping strategies for flexible and light-weight Cu2ZnSnSe4 solar cells</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>In this work we report on the effect of alkali doping via Na and/or K introduction into flexible and light-weight Cu2ZnSnSe4 (CZTSe) solar cells obtained using a sequential process based on the sputtering of metallic stacks and further reactive annealing. Different thicknesses of Cr diffusion barriers and 50 mu m thick ferritic steel substrates were used. We compare different doping methods: Na-doped Mo targets (MoNa), SLG underneath the flexible substrates, NaF and KF pre-absorber synthesis evaporation (PAS) and post-deposition evaporation (PDT). Additionally, we report on the importance of the Cr barrier and back contact modification to improve solar cell performance. A remarkable enhancement in the absorber grain size and surface morphology occurred especially when using Na via MoNa and PAS. Nevertheless, preliminary experiments led to better results for MoNa doping due to a higher Na content confirmed by TOF-SIMS. K doping via PAS also showed promising results. An increase in the efficiency of solar cells from 2.2% to 4.3% was possible when using a MoNa layer sandwiched between regular Mo layers. The improvement is mainly related to a higher VOC and FF. After performing a detailed Cr and back contact optimization, a record value of 6.1% for flexible CZTSe solar cells was recently obtained using MoNa and a new surface Ge doping.</description><subject>Annealing</subject><subject>Contact</subject><subject>Doping</subject><subject>Evaporation</subject><subject>PAS</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Substrates</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAYhC0EElXpwi_wyBLwd-yxivioVMRQWFgqJ3nfEDBJiB3BzycViJlbnhtOp9MRcs7ZJWfSXVU6eeaMYnBEFoJpluXKmeM_b-0pWcX4ymZZxoxzC3K_Dm8-tLTuh7ZraEyjT9C0ECn2I8UAX20ZgPqupqFtXlL2CQfQYhLP3a7bgaKxD36kFYQQz8gJ-hBh9cslebq5fizusu3D7aZYb7NBCJ4ylOiVUCCNEsBrY2SF2mqP2iCWKHkphdNotFSgeeV8XjpfK4EWEZjjckkufnqHsf-YIKb9exsPC3wH_RT33AqtzfyE_UeU2fmJXOXyGw3OX-Y</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Lopez-Marino, Simon</creator><creator>Sanchez, Yudania</creator><creator>Espindola-Rodriguez, Moises</creator><creator>Alcobe, Xavier</creator><creator>Xie, Haibing</creator><creator>Neuschitzer, Markus</creator><creator>Becerril, Ignacio</creator><creator>Giraldo, Sergio</creator><creator>Dimitrievska, Mirjana</creator><creator>Placidi, Marcel</creator><creator>Fourdrinier, Lionel</creator><creator>Izquierdo-Roca, Victor</creator><creator>Perez-Rodriguez, Alejandro</creator><creator>Saucedo, Edgardo</creator><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Alkali doping strategies for flexible and light-weight Cu2ZnSnSe4 solar cells</title><author>Lopez-Marino, Simon ; Sanchez, Yudania ; Espindola-Rodriguez, Moises ; Alcobe, Xavier ; Xie, Haibing ; Neuschitzer, Markus ; Becerril, Ignacio ; Giraldo, Sergio ; Dimitrievska, Mirjana ; Placidi, Marcel ; Fourdrinier, Lionel ; Izquierdo-Roca, Victor ; Perez-Rodriguez, Alejandro ; Saucedo, Edgardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p221t-f3fa424e3642e1d663cf585af56ffbf31b3295f6534e51c9a7b9ad42f8ffe0913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Annealing</topic><topic>Contact</topic><topic>Doping</topic><topic>Evaporation</topic><topic>PAS</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez-Marino, Simon</creatorcontrib><creatorcontrib>Sanchez, Yudania</creatorcontrib><creatorcontrib>Espindola-Rodriguez, Moises</creatorcontrib><creatorcontrib>Alcobe, Xavier</creatorcontrib><creatorcontrib>Xie, Haibing</creatorcontrib><creatorcontrib>Neuschitzer, Markus</creatorcontrib><creatorcontrib>Becerril, Ignacio</creatorcontrib><creatorcontrib>Giraldo, Sergio</creatorcontrib><creatorcontrib>Dimitrievska, Mirjana</creatorcontrib><creatorcontrib>Placidi, Marcel</creatorcontrib><creatorcontrib>Fourdrinier, Lionel</creatorcontrib><creatorcontrib>Izquierdo-Roca, Victor</creatorcontrib><creatorcontrib>Perez-Rodriguez, Alejandro</creatorcontrib><creatorcontrib>Saucedo, Edgardo</creatorcontrib><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez-Marino, Simon</au><au>Sanchez, Yudania</au><au>Espindola-Rodriguez, Moises</au><au>Alcobe, Xavier</au><au>Xie, Haibing</au><au>Neuschitzer, Markus</au><au>Becerril, Ignacio</au><au>Giraldo, Sergio</au><au>Dimitrievska, Mirjana</au><au>Placidi, Marcel</au><au>Fourdrinier, Lionel</au><au>Izquierdo-Roca, Victor</au><au>Perez-Rodriguez, Alejandro</au><au>Saucedo, Edgardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alkali doping strategies for flexible and light-weight Cu2ZnSnSe4 solar cells</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>4</volume><issue>5</issue><spage>1895</spage><epage>1907</epage><pages>1895-1907</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>In this work we report on the effect of alkali doping via Na and/or K introduction into flexible and light-weight Cu2ZnSnSe4 (CZTSe) solar cells obtained using a sequential process based on the sputtering of metallic stacks and further reactive annealing. Different thicknesses of Cr diffusion barriers and 50 mu m thick ferritic steel substrates were used. We compare different doping methods: Na-doped Mo targets (MoNa), SLG underneath the flexible substrates, NaF and KF pre-absorber synthesis evaporation (PAS) and post-deposition evaporation (PDT). Additionally, we report on the importance of the Cr barrier and back contact modification to improve solar cell performance. A remarkable enhancement in the absorber grain size and surface morphology occurred especially when using Na via MoNa and PAS. Nevertheless, preliminary experiments led to better results for MoNa doping due to a higher Na content confirmed by TOF-SIMS. K doping via PAS also showed promising results. An increase in the efficiency of solar cells from 2.2% to 4.3% was possible when using a MoNa layer sandwiched between regular Mo layers. The improvement is mainly related to a higher VOC and FF. After performing a detailed Cr and back contact optimization, a record value of 6.1% for flexible CZTSe solar cells was recently obtained using MoNa and a new surface Ge doping.</abstract><doi>10.1039/c5ta09640e</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2016-01, Vol.4 (5), p.1895-1907 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825566408 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Annealing Contact Doping Evaporation PAS Photovoltaic cells Solar cells Substrates |
title | Alkali doping strategies for flexible and light-weight Cu2ZnSnSe4 solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alkali%20doping%20strategies%20for%20flexible%20and%20light-weight%20Cu2ZnSnSe4%20solar%20cells&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Lopez-Marino,%20Simon&rft.date=2016-01-01&rft.volume=4&rft.issue=5&rft.spage=1895&rft.epage=1907&rft.pages=1895-1907&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c5ta09640e&rft_dat=%3Cproquest%3E1808699747%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808699747&rft_id=info:pmid/&rfr_iscdi=true |