Analysis of the axisymmetrical ionized gas boundary layer adjacent to porous contour of the body of revolution
The ionized gas flow in the boundary layer on bodies of revolution with porous contour is studied in this paper. The gas electroconductivity is assumed to be a function of the longitudinal coordinate x. The problem is solved using Saljnikov's version of the general similarity method. This paper...
Gespeichert in:
Veröffentlicht in: | Thermal science 2016-01, Vol.20 (2), p.529-540 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 540 |
---|---|
container_issue | 2 |
container_start_page | 529 |
container_title | Thermal science |
container_volume | 20 |
creator | Savic, Slobodan Obrovic, Branko Hristov, Nebojsa |
description | The ionized gas flow in the boundary layer on bodies of revolution with
porous contour is studied in this paper. The gas electroconductivity is
assumed to be a function of the longitudinal coordinate x. The problem is
solved using Saljnikov's version of the general similarity method. This paper
is an extension of Saljnikov?s generalized solutions and their application to
a particular case of magnetohydrodynamic (MHD) flow. Generalized boundary
layer equations have been numerically solved in a four-parametric localized
approximation and characteristics of some physical quantities in the boundary
layer has been studied. |
doi_str_mv | 10.2298/TSCI150422143S |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825565132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429778593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-3c95bf5a10e09e1003eae39176d3efe1ba365467592d8e13fbf86a55f8d2f3163</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EEqWwMltiYUnxI3bssap4VKrE0DJHTnINqdK42A4i_HpcFQaY7h0-HZ3zIXRNyYwxre4268WSCpIzRnO-PkETxnmeFVTyUzQhXOSZVlyeo4sQtoRIqVQxQf28N90Y2oCdxfENsPlsw7jbQfRtbTrcur79gga_moArN_SN8SPuzAgem2Zraugjjg7vnXdDwLXroxv8b1blmvHwe_hw3RBT1iU6s6YLcPVzp-jl4X6zeMpWz4_LxXyV1UyLmPFai8oKQwkQDZQQDga4poVsOFigleFS5LIQmjUKKLeVVdIIYVXDLE-Lp-j2mLv37n2AEMtdG2roOtNDKlpSxYSQgnKW0Jt_6DZNSFZCyXKmi0IJzRM1O1K1dyF4sOXet7sko6SkPOgv_-rn3-KReUU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429778593</pqid></control><display><type>article</type><title>Analysis of the axisymmetrical ionized gas boundary layer adjacent to porous contour of the body of revolution</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Savic, Slobodan ; Obrovic, Branko ; Hristov, Nebojsa</creator><creatorcontrib>Savic, Slobodan ; Obrovic, Branko ; Hristov, Nebojsa</creatorcontrib><description>The ionized gas flow in the boundary layer on bodies of revolution with
porous contour is studied in this paper. The gas electroconductivity is
assumed to be a function of the longitudinal coordinate x. The problem is
solved using Saljnikov's version of the general similarity method. This paper
is an extension of Saljnikov?s generalized solutions and their application to
a particular case of magnetohydrodynamic (MHD) flow. Generalized boundary
layer equations have been numerically solved in a four-parametric localized
approximation and characteristics of some physical quantities in the boundary
layer has been studied.</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI150422143S</identifier><language>eng</language><publisher>Belgrade: Society of Thermal Engineers of Serbia</publisher><subject>Approximation ; Bodies of revolution ; Boundary layer ; Boundary layer equations ; Computational fluid dynamics ; Contours ; Fluid flow ; Gas flow ; Magnetohydrodynamics ; Mathematical analysis ; Mathematical models ; Shape ; Similarity</subject><ispartof>Thermal science, 2016-01, Vol.20 (2), p.529-540</ispartof><rights>2016. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Savic, Slobodan</creatorcontrib><creatorcontrib>Obrovic, Branko</creatorcontrib><creatorcontrib>Hristov, Nebojsa</creatorcontrib><title>Analysis of the axisymmetrical ionized gas boundary layer adjacent to porous contour of the body of revolution</title><title>Thermal science</title><description>The ionized gas flow in the boundary layer on bodies of revolution with
porous contour is studied in this paper. The gas electroconductivity is
assumed to be a function of the longitudinal coordinate x. The problem is
solved using Saljnikov's version of the general similarity method. This paper
is an extension of Saljnikov?s generalized solutions and their application to
a particular case of magnetohydrodynamic (MHD) flow. Generalized boundary
layer equations have been numerically solved in a four-parametric localized
approximation and characteristics of some physical quantities in the boundary
layer has been studied.</description><subject>Approximation</subject><subject>Bodies of revolution</subject><subject>Boundary layer</subject><subject>Boundary layer equations</subject><subject>Computational fluid dynamics</subject><subject>Contours</subject><subject>Fluid flow</subject><subject>Gas flow</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Shape</subject><subject>Similarity</subject><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkDtPwzAUhS0EEqWwMltiYUnxI3bssap4VKrE0DJHTnINqdK42A4i_HpcFQaY7h0-HZ3zIXRNyYwxre4268WSCpIzRnO-PkETxnmeFVTyUzQhXOSZVlyeo4sQtoRIqVQxQf28N90Y2oCdxfENsPlsw7jbQfRtbTrcur79gga_moArN_SN8SPuzAgem2Zraugjjg7vnXdDwLXroxv8b1blmvHwe_hw3RBT1iU6s6YLcPVzp-jl4X6zeMpWz4_LxXyV1UyLmPFai8oKQwkQDZQQDga4poVsOFigleFS5LIQmjUKKLeVVdIIYVXDLE-Lp-j2mLv37n2AEMtdG2roOtNDKlpSxYSQgnKW0Jt_6DZNSFZCyXKmi0IJzRM1O1K1dyF4sOXet7sko6SkPOgv_-rn3-KReUU</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Savic, Slobodan</creator><creator>Obrovic, Branko</creator><creator>Hristov, Nebojsa</creator><general>Society of Thermal Engineers of Serbia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160101</creationdate><title>Analysis of the axisymmetrical ionized gas boundary layer adjacent to porous contour of the body of revolution</title><author>Savic, Slobodan ; Obrovic, Branko ; Hristov, Nebojsa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-3c95bf5a10e09e1003eae39176d3efe1ba365467592d8e13fbf86a55f8d2f3163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Bodies of revolution</topic><topic>Boundary layer</topic><topic>Boundary layer equations</topic><topic>Computational fluid dynamics</topic><topic>Contours</topic><topic>Fluid flow</topic><topic>Gas flow</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Shape</topic><topic>Similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Savic, Slobodan</creatorcontrib><creatorcontrib>Obrovic, Branko</creatorcontrib><creatorcontrib>Hristov, Nebojsa</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Savic, Slobodan</au><au>Obrovic, Branko</au><au>Hristov, Nebojsa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the axisymmetrical ionized gas boundary layer adjacent to porous contour of the body of revolution</atitle><jtitle>Thermal science</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>20</volume><issue>2</issue><spage>529</spage><epage>540</epage><pages>529-540</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>The ionized gas flow in the boundary layer on bodies of revolution with
porous contour is studied in this paper. The gas electroconductivity is
assumed to be a function of the longitudinal coordinate x. The problem is
solved using Saljnikov's version of the general similarity method. This paper
is an extension of Saljnikov?s generalized solutions and their application to
a particular case of magnetohydrodynamic (MHD) flow. Generalized boundary
layer equations have been numerically solved in a four-parametric localized
approximation and characteristics of some physical quantities in the boundary
layer has been studied.</abstract><cop>Belgrade</cop><pub>Society of Thermal Engineers of Serbia</pub><doi>10.2298/TSCI150422143S</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0354-9836 |
ispartof | Thermal science, 2016-01, Vol.20 (2), p.529-540 |
issn | 0354-9836 2334-7163 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825565132 |
source | EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Approximation Bodies of revolution Boundary layer Boundary layer equations Computational fluid dynamics Contours Fluid flow Gas flow Magnetohydrodynamics Mathematical analysis Mathematical models Shape Similarity |
title | Analysis of the axisymmetrical ionized gas boundary layer adjacent to porous contour of the body of revolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20axisymmetrical%20ionized%20gas%20boundary%20layer%20adjacent%20to%20porous%20contour%20of%20the%20body%20of%20revolution&rft.jtitle=Thermal%20science&rft.au=Savic,%20Slobodan&rft.date=2016-01-01&rft.volume=20&rft.issue=2&rft.spage=529&rft.epage=540&rft.pages=529-540&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI150422143S&rft_dat=%3Cproquest_cross%3E2429778593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429778593&rft_id=info:pmid/&rfr_iscdi=true |