Analysis of the axisymmetrical ionized gas boundary layer adjacent to porous contour of the body of revolution

The ionized gas flow in the boundary layer on bodies of revolution with porous contour is studied in this paper. The gas electroconductivity is assumed to be a function of the longitudinal coordinate x. The problem is solved using Saljnikov's version of the general similarity method. This paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermal science 2016-01, Vol.20 (2), p.529-540
Hauptverfasser: Savic, Slobodan, Obrovic, Branko, Hristov, Nebojsa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 540
container_issue 2
container_start_page 529
container_title Thermal science
container_volume 20
creator Savic, Slobodan
Obrovic, Branko
Hristov, Nebojsa
description The ionized gas flow in the boundary layer on bodies of revolution with porous contour is studied in this paper. The gas electroconductivity is assumed to be a function of the longitudinal coordinate x. The problem is solved using Saljnikov's version of the general similarity method. This paper is an extension of Saljnikov?s generalized solutions and their application to a particular case of magnetohydrodynamic (MHD) flow. Generalized boundary layer equations have been numerically solved in a four-parametric localized approximation and characteristics of some physical quantities in the boundary layer has been studied.
doi_str_mv 10.2298/TSCI150422143S
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825565132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429778593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-3c95bf5a10e09e1003eae39176d3efe1ba365467592d8e13fbf86a55f8d2f3163</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EEqWwMltiYUnxI3bssap4VKrE0DJHTnINqdK42A4i_HpcFQaY7h0-HZ3zIXRNyYwxre4268WSCpIzRnO-PkETxnmeFVTyUzQhXOSZVlyeo4sQtoRIqVQxQf28N90Y2oCdxfENsPlsw7jbQfRtbTrcur79gga_moArN_SN8SPuzAgem2Zraugjjg7vnXdDwLXroxv8b1blmvHwe_hw3RBT1iU6s6YLcPVzp-jl4X6zeMpWz4_LxXyV1UyLmPFai8oKQwkQDZQQDga4poVsOFigleFS5LIQmjUKKLeVVdIIYVXDLE-Lp-j2mLv37n2AEMtdG2roOtNDKlpSxYSQgnKW0Jt_6DZNSFZCyXKmi0IJzRM1O1K1dyF4sOXet7sko6SkPOgv_-rn3-KReUU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429778593</pqid></control><display><type>article</type><title>Analysis of the axisymmetrical ionized gas boundary layer adjacent to porous contour of the body of revolution</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Savic, Slobodan ; Obrovic, Branko ; Hristov, Nebojsa</creator><creatorcontrib>Savic, Slobodan ; Obrovic, Branko ; Hristov, Nebojsa</creatorcontrib><description>The ionized gas flow in the boundary layer on bodies of revolution with porous contour is studied in this paper. The gas electroconductivity is assumed to be a function of the longitudinal coordinate x. The problem is solved using Saljnikov's version of the general similarity method. This paper is an extension of Saljnikov?s generalized solutions and their application to a particular case of magnetohydrodynamic (MHD) flow. Generalized boundary layer equations have been numerically solved in a four-parametric localized approximation and characteristics of some physical quantities in the boundary layer has been studied.</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI150422143S</identifier><language>eng</language><publisher>Belgrade: Society of Thermal Engineers of Serbia</publisher><subject>Approximation ; Bodies of revolution ; Boundary layer ; Boundary layer equations ; Computational fluid dynamics ; Contours ; Fluid flow ; Gas flow ; Magnetohydrodynamics ; Mathematical analysis ; Mathematical models ; Shape ; Similarity</subject><ispartof>Thermal science, 2016-01, Vol.20 (2), p.529-540</ispartof><rights>2016. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Savic, Slobodan</creatorcontrib><creatorcontrib>Obrovic, Branko</creatorcontrib><creatorcontrib>Hristov, Nebojsa</creatorcontrib><title>Analysis of the axisymmetrical ionized gas boundary layer adjacent to porous contour of the body of revolution</title><title>Thermal science</title><description>The ionized gas flow in the boundary layer on bodies of revolution with porous contour is studied in this paper. The gas electroconductivity is assumed to be a function of the longitudinal coordinate x. The problem is solved using Saljnikov's version of the general similarity method. This paper is an extension of Saljnikov?s generalized solutions and their application to a particular case of magnetohydrodynamic (MHD) flow. Generalized boundary layer equations have been numerically solved in a four-parametric localized approximation and characteristics of some physical quantities in the boundary layer has been studied.</description><subject>Approximation</subject><subject>Bodies of revolution</subject><subject>Boundary layer</subject><subject>Boundary layer equations</subject><subject>Computational fluid dynamics</subject><subject>Contours</subject><subject>Fluid flow</subject><subject>Gas flow</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Shape</subject><subject>Similarity</subject><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkDtPwzAUhS0EEqWwMltiYUnxI3bssap4VKrE0DJHTnINqdK42A4i_HpcFQaY7h0-HZ3zIXRNyYwxre4268WSCpIzRnO-PkETxnmeFVTyUzQhXOSZVlyeo4sQtoRIqVQxQf28N90Y2oCdxfENsPlsw7jbQfRtbTrcur79gga_moArN_SN8SPuzAgem2Zraugjjg7vnXdDwLXroxv8b1blmvHwe_hw3RBT1iU6s6YLcPVzp-jl4X6zeMpWz4_LxXyV1UyLmPFai8oKQwkQDZQQDga4poVsOFigleFS5LIQmjUKKLeVVdIIYVXDLE-Lp-j2mLv37n2AEMtdG2roOtNDKlpSxYSQgnKW0Jt_6DZNSFZCyXKmi0IJzRM1O1K1dyF4sOXet7sko6SkPOgv_-rn3-KReUU</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Savic, Slobodan</creator><creator>Obrovic, Branko</creator><creator>Hristov, Nebojsa</creator><general>Society of Thermal Engineers of Serbia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160101</creationdate><title>Analysis of the axisymmetrical ionized gas boundary layer adjacent to porous contour of the body of revolution</title><author>Savic, Slobodan ; Obrovic, Branko ; Hristov, Nebojsa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-3c95bf5a10e09e1003eae39176d3efe1ba365467592d8e13fbf86a55f8d2f3163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Bodies of revolution</topic><topic>Boundary layer</topic><topic>Boundary layer equations</topic><topic>Computational fluid dynamics</topic><topic>Contours</topic><topic>Fluid flow</topic><topic>Gas flow</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Shape</topic><topic>Similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Savic, Slobodan</creatorcontrib><creatorcontrib>Obrovic, Branko</creatorcontrib><creatorcontrib>Hristov, Nebojsa</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Savic, Slobodan</au><au>Obrovic, Branko</au><au>Hristov, Nebojsa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the axisymmetrical ionized gas boundary layer adjacent to porous contour of the body of revolution</atitle><jtitle>Thermal science</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>20</volume><issue>2</issue><spage>529</spage><epage>540</epage><pages>529-540</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>The ionized gas flow in the boundary layer on bodies of revolution with porous contour is studied in this paper. The gas electroconductivity is assumed to be a function of the longitudinal coordinate x. The problem is solved using Saljnikov's version of the general similarity method. This paper is an extension of Saljnikov?s generalized solutions and their application to a particular case of magnetohydrodynamic (MHD) flow. Generalized boundary layer equations have been numerically solved in a four-parametric localized approximation and characteristics of some physical quantities in the boundary layer has been studied.</abstract><cop>Belgrade</cop><pub>Society of Thermal Engineers of Serbia</pub><doi>10.2298/TSCI150422143S</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-9836
ispartof Thermal science, 2016-01, Vol.20 (2), p.529-540
issn 0354-9836
2334-7163
language eng
recordid cdi_proquest_miscellaneous_1825565132
source EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Approximation
Bodies of revolution
Boundary layer
Boundary layer equations
Computational fluid dynamics
Contours
Fluid flow
Gas flow
Magnetohydrodynamics
Mathematical analysis
Mathematical models
Shape
Similarity
title Analysis of the axisymmetrical ionized gas boundary layer adjacent to porous contour of the body of revolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20axisymmetrical%20ionized%20gas%20boundary%20layer%20adjacent%20to%20porous%20contour%20of%20the%20body%20of%20revolution&rft.jtitle=Thermal%20science&rft.au=Savic,%20Slobodan&rft.date=2016-01-01&rft.volume=20&rft.issue=2&rft.spage=529&rft.epage=540&rft.pages=529-540&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI150422143S&rft_dat=%3Cproquest_cross%3E2429778593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429778593&rft_id=info:pmid/&rfr_iscdi=true