Improved spatial delineation of streambed properties and water fluxes using distributed temperature sensing

A new method was developed for analysing and delineating streambed water fluxes, flow conditions and hydraulic properties using coiled fibre‐optic distributed temperature sensing or closely spaced discrete temperature sensors. This method allows for a thorough treatment of the spatial information em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological processes 2016-07, Vol.30 (15), p.2686-2702
Hauptverfasser: Halloran, Landon J. S., Roshan, Hamid, Rau, Gabriel C., Andersen, Martin S., Acworth, R. Ian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2702
container_issue 15
container_start_page 2686
container_title Hydrological processes
container_volume 30
creator Halloran, Landon J. S.
Roshan, Hamid
Rau, Gabriel C.
Andersen, Martin S.
Acworth, R. Ian
description A new method was developed for analysing and delineating streambed water fluxes, flow conditions and hydraulic properties using coiled fibre‐optic distributed temperature sensing or closely spaced discrete temperature sensors. This method allows for a thorough treatment of the spatial information embedded in temperature data by creating a matrix visualization of all possible sensor pairs. Application of the method to a 5‐day field dataset reveals the complexity of shallow streambed thermal regimes. To understand how velocity estimates are affected by violations of assumptions of one‐dimensional, saturated, homogeneous flow and to aid in the interpretation of field observations, the method was also applied to temperature data generated by numerical models of common field conditions: horizontal layering, presence of lateral flow and variable streambed saturation. The results show that each condition creates a distinct signature visible in the triangular matrices. The matrices are used to perform a comparison of the behaviour of one‐dimensional analytical heat‐tracing models. The results show that the amplitude ratio‐based method of velocity calculation leads to the most reliable estimates. The minimum sensor spacing required to obtain reliable velocity estimates with discrete sensors is also investigated using field data. The developed method will aid future heat‐tracing studies by providing a technique for visualizing and comparing results from fibre‐optic distributed temperature sensing installations and testing the robustness of analytical heat‐tracing models. Copyright © 2016 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/hyp.10806
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825565070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825565070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4956-4576c72d5deb9b045baf25f24fae7314d91ffd44068652f9e27e19922650e7ca3</originalsourceid><addsrcrecordid>eNqN0U1vFSEUBmBiNPFaXfgPSNzoYiwwfC5No_c2aaqxGuOKMDMHpZ0vYcb2_ntPe9WFicYVB3gOAV5CnnL2kjMmjr_uZyws0_fIhjPnKpyo-2TDrFWVZtY8JI9KuWSMSVQbcnU6zHn6Dh0tc1hS6GkHfRoB62mkU6RlyRCGBgG6GfKSoNAwdvQ6LJBp7NcbXFhLGr_QLqFOzbqgXmBAHZY1Ay0w3u4_Jg9i6As8-TkekY9vXn842VVnb7enJ6_OqlY6pSupjG6N6FQHjWuYVE2IQkUhYwBTc9k5HmMnJdNWKxEdCAPcOSG0YmDaUB-R54dz8cbfViiLH1Jpoe_DCNNaPLdCKcSG_QdlVgtRS4n02R_0clrziA_x3DGlJX53_U9lWc2NFVygenFQbZ5KyRD9nNMQ8t5z5m9z9Jijv8sR7fHBXqce9n-Hfvf53a-O6tCBccDN746Qr7w2tVH-0_nWy93F7mJrnH9f_wDwq64x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1803178212</pqid></control><display><type>article</type><title>Improved spatial delineation of streambed properties and water fluxes using distributed temperature sensing</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Halloran, Landon J. S. ; Roshan, Hamid ; Rau, Gabriel C. ; Andersen, Martin S. ; Acworth, R. Ian</creator><creatorcontrib>Halloran, Landon J. S. ; Roshan, Hamid ; Rau, Gabriel C. ; Andersen, Martin S. ; Acworth, R. Ian</creatorcontrib><description>A new method was developed for analysing and delineating streambed water fluxes, flow conditions and hydraulic properties using coiled fibre‐optic distributed temperature sensing or closely spaced discrete temperature sensors. This method allows for a thorough treatment of the spatial information embedded in temperature data by creating a matrix visualization of all possible sensor pairs. Application of the method to a 5‐day field dataset reveals the complexity of shallow streambed thermal regimes. To understand how velocity estimates are affected by violations of assumptions of one‐dimensional, saturated, homogeneous flow and to aid in the interpretation of field observations, the method was also applied to temperature data generated by numerical models of common field conditions: horizontal layering, presence of lateral flow and variable streambed saturation. The results show that each condition creates a distinct signature visible in the triangular matrices. The matrices are used to perform a comparison of the behaviour of one‐dimensional analytical heat‐tracing models. The results show that the amplitude ratio‐based method of velocity calculation leads to the most reliable estimates. The minimum sensor spacing required to obtain reliable velocity estimates with discrete sensors is also investigated using field data. The developed method will aid future heat‐tracing studies by providing a technique for visualizing and comparing results from fibre‐optic distributed temperature sensing installations and testing the robustness of analytical heat‐tracing models. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0885-6087</identifier><identifier>EISSN: 1099-1085</identifier><identifier>DOI: 10.1002/hyp.10806</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Amplitude ; Complexity ; Data processing ; Delineation ; Detection ; Dimensional analysis ; distributed temperature sensing ; Estimates ; Fiber optics ; Flow ; Fluxes ; Heat ; heat as a tracer ; Hydraulic properties ; Layering ; Mathematical analysis ; Mathematical models ; Matrices (mathematics) ; Methods ; Numerical models ; Optical fibers ; Properties ; Robustness (mathematics) ; Saturation ; Sensors ; Spatial analysis ; Spatial distribution ; Streambeds ; surface water-groundwater interaction ; Temperature ; Temperature data ; Temperature effects ; Temperature sensors ; Testing ; time-series analysis ; Velocity ; Visualization ; Water</subject><ispartof>Hydrological processes, 2016-07, Vol.30 (15), p.2686-2702</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4956-4576c72d5deb9b045baf25f24fae7314d91ffd44068652f9e27e19922650e7ca3</citedby><cites>FETCH-LOGICAL-c4956-4576c72d5deb9b045baf25f24fae7314d91ffd44068652f9e27e19922650e7ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhyp.10806$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhyp.10806$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Halloran, Landon J. S.</creatorcontrib><creatorcontrib>Roshan, Hamid</creatorcontrib><creatorcontrib>Rau, Gabriel C.</creatorcontrib><creatorcontrib>Andersen, Martin S.</creatorcontrib><creatorcontrib>Acworth, R. Ian</creatorcontrib><title>Improved spatial delineation of streambed properties and water fluxes using distributed temperature sensing</title><title>Hydrological processes</title><addtitle>Hydrol. Process</addtitle><description>A new method was developed for analysing and delineating streambed water fluxes, flow conditions and hydraulic properties using coiled fibre‐optic distributed temperature sensing or closely spaced discrete temperature sensors. This method allows for a thorough treatment of the spatial information embedded in temperature data by creating a matrix visualization of all possible sensor pairs. Application of the method to a 5‐day field dataset reveals the complexity of shallow streambed thermal regimes. To understand how velocity estimates are affected by violations of assumptions of one‐dimensional, saturated, homogeneous flow and to aid in the interpretation of field observations, the method was also applied to temperature data generated by numerical models of common field conditions: horizontal layering, presence of lateral flow and variable streambed saturation. The results show that each condition creates a distinct signature visible in the triangular matrices. The matrices are used to perform a comparison of the behaviour of one‐dimensional analytical heat‐tracing models. The results show that the amplitude ratio‐based method of velocity calculation leads to the most reliable estimates. The minimum sensor spacing required to obtain reliable velocity estimates with discrete sensors is also investigated using field data. The developed method will aid future heat‐tracing studies by providing a technique for visualizing and comparing results from fibre‐optic distributed temperature sensing installations and testing the robustness of analytical heat‐tracing models. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><subject>Amplitude</subject><subject>Complexity</subject><subject>Data processing</subject><subject>Delineation</subject><subject>Detection</subject><subject>Dimensional analysis</subject><subject>distributed temperature sensing</subject><subject>Estimates</subject><subject>Fiber optics</subject><subject>Flow</subject><subject>Fluxes</subject><subject>Heat</subject><subject>heat as a tracer</subject><subject>Hydraulic properties</subject><subject>Layering</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Matrices (mathematics)</subject><subject>Methods</subject><subject>Numerical models</subject><subject>Optical fibers</subject><subject>Properties</subject><subject>Robustness (mathematics)</subject><subject>Saturation</subject><subject>Sensors</subject><subject>Spatial analysis</subject><subject>Spatial distribution</subject><subject>Streambeds</subject><subject>surface water-groundwater interaction</subject><subject>Temperature</subject><subject>Temperature data</subject><subject>Temperature effects</subject><subject>Temperature sensors</subject><subject>Testing</subject><subject>time-series analysis</subject><subject>Velocity</subject><subject>Visualization</subject><subject>Water</subject><issn>0885-6087</issn><issn>1099-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0U1vFSEUBmBiNPFaXfgPSNzoYiwwfC5No_c2aaqxGuOKMDMHpZ0vYcb2_ntPe9WFicYVB3gOAV5CnnL2kjMmjr_uZyws0_fIhjPnKpyo-2TDrFWVZtY8JI9KuWSMSVQbcnU6zHn6Dh0tc1hS6GkHfRoB62mkU6RlyRCGBgG6GfKSoNAwdvQ6LJBp7NcbXFhLGr_QLqFOzbqgXmBAHZY1Ay0w3u4_Jg9i6As8-TkekY9vXn842VVnb7enJ6_OqlY6pSupjG6N6FQHjWuYVE2IQkUhYwBTc9k5HmMnJdNWKxEdCAPcOSG0YmDaUB-R54dz8cbfViiLH1Jpoe_DCNNaPLdCKcSG_QdlVgtRS4n02R_0clrziA_x3DGlJX53_U9lWc2NFVygenFQbZ5KyRD9nNMQ8t5z5m9z9Jijv8sR7fHBXqce9n-Hfvf53a-O6tCBccDN746Qr7w2tVH-0_nWy93F7mJrnH9f_wDwq64x</recordid><startdate>20160715</startdate><enddate>20160715</enddate><creator>Halloran, Landon J. S.</creator><creator>Roshan, Hamid</creator><creator>Rau, Gabriel C.</creator><creator>Andersen, Martin S.</creator><creator>Acworth, R. Ian</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20160715</creationdate><title>Improved spatial delineation of streambed properties and water fluxes using distributed temperature sensing</title><author>Halloran, Landon J. S. ; Roshan, Hamid ; Rau, Gabriel C. ; Andersen, Martin S. ; Acworth, R. Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4956-4576c72d5deb9b045baf25f24fae7314d91ffd44068652f9e27e19922650e7ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amplitude</topic><topic>Complexity</topic><topic>Data processing</topic><topic>Delineation</topic><topic>Detection</topic><topic>Dimensional analysis</topic><topic>distributed temperature sensing</topic><topic>Estimates</topic><topic>Fiber optics</topic><topic>Flow</topic><topic>Fluxes</topic><topic>Heat</topic><topic>heat as a tracer</topic><topic>Hydraulic properties</topic><topic>Layering</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Matrices (mathematics)</topic><topic>Methods</topic><topic>Numerical models</topic><topic>Optical fibers</topic><topic>Properties</topic><topic>Robustness (mathematics)</topic><topic>Saturation</topic><topic>Sensors</topic><topic>Spatial analysis</topic><topic>Spatial distribution</topic><topic>Streambeds</topic><topic>surface water-groundwater interaction</topic><topic>Temperature</topic><topic>Temperature data</topic><topic>Temperature effects</topic><topic>Temperature sensors</topic><topic>Testing</topic><topic>time-series analysis</topic><topic>Velocity</topic><topic>Visualization</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halloran, Landon J. S.</creatorcontrib><creatorcontrib>Roshan, Hamid</creatorcontrib><creatorcontrib>Rau, Gabriel C.</creatorcontrib><creatorcontrib>Andersen, Martin S.</creatorcontrib><creatorcontrib>Acworth, R. Ian</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halloran, Landon J. S.</au><au>Roshan, Hamid</au><au>Rau, Gabriel C.</au><au>Andersen, Martin S.</au><au>Acworth, R. Ian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved spatial delineation of streambed properties and water fluxes using distributed temperature sensing</atitle><jtitle>Hydrological processes</jtitle><addtitle>Hydrol. Process</addtitle><date>2016-07-15</date><risdate>2016</risdate><volume>30</volume><issue>15</issue><spage>2686</spage><epage>2702</epage><pages>2686-2702</pages><issn>0885-6087</issn><eissn>1099-1085</eissn><abstract>A new method was developed for analysing and delineating streambed water fluxes, flow conditions and hydraulic properties using coiled fibre‐optic distributed temperature sensing or closely spaced discrete temperature sensors. This method allows for a thorough treatment of the spatial information embedded in temperature data by creating a matrix visualization of all possible sensor pairs. Application of the method to a 5‐day field dataset reveals the complexity of shallow streambed thermal regimes. To understand how velocity estimates are affected by violations of assumptions of one‐dimensional, saturated, homogeneous flow and to aid in the interpretation of field observations, the method was also applied to temperature data generated by numerical models of common field conditions: horizontal layering, presence of lateral flow and variable streambed saturation. The results show that each condition creates a distinct signature visible in the triangular matrices. The matrices are used to perform a comparison of the behaviour of one‐dimensional analytical heat‐tracing models. The results show that the amplitude ratio‐based method of velocity calculation leads to the most reliable estimates. The minimum sensor spacing required to obtain reliable velocity estimates with discrete sensors is also investigated using field data. The developed method will aid future heat‐tracing studies by providing a technique for visualizing and comparing results from fibre‐optic distributed temperature sensing installations and testing the robustness of analytical heat‐tracing models. Copyright © 2016 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/hyp.10806</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-6087
ispartof Hydrological processes, 2016-07, Vol.30 (15), p.2686-2702
issn 0885-6087
1099-1085
language eng
recordid cdi_proquest_miscellaneous_1825565070
source Wiley Online Library Journals Frontfile Complete
subjects Amplitude
Complexity
Data processing
Delineation
Detection
Dimensional analysis
distributed temperature sensing
Estimates
Fiber optics
Flow
Fluxes
Heat
heat as a tracer
Hydraulic properties
Layering
Mathematical analysis
Mathematical models
Matrices (mathematics)
Methods
Numerical models
Optical fibers
Properties
Robustness (mathematics)
Saturation
Sensors
Spatial analysis
Spatial distribution
Streambeds
surface water-groundwater interaction
Temperature
Temperature data
Temperature effects
Temperature sensors
Testing
time-series analysis
Velocity
Visualization
Water
title Improved spatial delineation of streambed properties and water fluxes using distributed temperature sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A24%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20spatial%20delineation%20of%20streambed%20properties%20and%20water%20fluxes%20using%20distributed%20temperature%20sensing&rft.jtitle=Hydrological%20processes&rft.au=Halloran,%20Landon%20J.%20S.&rft.date=2016-07-15&rft.volume=30&rft.issue=15&rft.spage=2686&rft.epage=2702&rft.pages=2686-2702&rft.issn=0885-6087&rft.eissn=1099-1085&rft_id=info:doi/10.1002/hyp.10806&rft_dat=%3Cproquest_cross%3E1825565070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1803178212&rft_id=info:pmid/&rfr_iscdi=true