Modelling spin Hamiltonian parameters of molecular nanomagnets
Molecular nanomagnets encompass a wide range of coordination complexes possessing several potential applications. A formidable challenge in realizing these potential applications lies in controlling the magnetic properties of these clusters. Microscopic spin Hamiltonian (SH) parameters describe the...
Gespeichert in:
Veröffentlicht in: | Chemical communications (Cambridge, England) England), 2016-07, Vol.52 (58), p.8972-98 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 98 |
---|---|
container_issue | 58 |
container_start_page | 8972 |
container_title | Chemical communications (Cambridge, England) |
container_volume | 52 |
creator | Gupta, Tulika Rajaraman, Gopalan |
description | Molecular nanomagnets encompass a wide range of coordination complexes possessing several potential applications. A formidable challenge in realizing these potential applications lies in controlling the magnetic properties of these clusters. Microscopic spin Hamiltonian (SH) parameters describe the magnetic properties of these clusters, and viable ways to control these SH parameters are highly desirable. Computational tools play a proactive role in this area, where SH parameters such as isotropic exchange interaction (
J
), anisotropic exchange interaction (
J
x
,
J
y
,
J
z
), double exchange interaction (
B
), zero-field splitting parameters (
D
,
E
) and
g
-tensors can be computed reliably using X-ray structures. In this feature article, we have attempted to provide a holistic view of the modelling of these SH parameters of molecular magnets. The determination of
J
includes various class of molecules, from di- and polynuclear Mn complexes to the {3d-Gd}, {Gd-Gd} and {Gd-2p} class of complexes. The estimation of anisotropic exchange coupling includes the exchange between an isotropic metal ion and an orbitally degenerate 3d/4d/5d metal ion. The double-exchange section contains some illustrative examples of mixed valance systems, and the section on the estimation of zfs parameters covers some mononuclear transition metal complexes possessing very large axial zfs parameters. The section on the computation of
g
-anisotropy exclusively covers studies on mononuclear Dy
III
and Er
III
single-ion magnets. The examples depicted in this article clearly illustrate that computational tools not only aid in interpreting and rationalizing the observed magnetic properties but possess the potential to predict new generation MNMs.
With significant development in the computational methods applied to open-shell systems and tremendous improvements in computing resources, molecular modelling has become an integral part of the study of molecular magnetism. In this feature study, we have attempted to provide a bird's-eye view of the modelling of various spin Hamiltonian parameters of molecular nanomagnets. |
doi_str_mv | 10.1039/c6cc01251e |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825564882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825564882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-98843f3e17fa09d9c71d633bf5e8e702bbc6ae271788ce92a7a1897fbfe000ce3</originalsourceid><addsrcrecordid>eNqNkc1LxDAQxYMo7rp68a70KEI1aZqviyBldYUVLwreSppOlkqbrEl78L-3667r1bnMwPvxeLxB6JzgG4KpujXcGEwyRuAATQnlecpy-X64uZlKBc3ZBJ3E-IHHIUweo0kmKOdC5VN09-xraNvGrZK4blyy0F3T9t412iVrHXQHPYSYeJt0vgUztDokTjvf6ZWDPp6iI6vbCGe7PUNvD_PXYpEuXx6fivtlaqikfaqkzKmlQITVWNXKCFJzSivLQILAWVUZriETREhpQGVaaCKVsJWFMbMBOkNXW9918J8DxL7smmjG4NqBH2JJZMYYz6XM_oFiKpTMCRvR6y1qgo8xgC3Xoel0-CoJLjfVlgUvip9q5yN8ufMdqg7qPfrb5QhcbIEQzV79-w39Bvy1fX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1803798415</pqid></control><display><type>article</type><title>Modelling spin Hamiltonian parameters of molecular nanomagnets</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Gupta, Tulika ; Rajaraman, Gopalan</creator><creatorcontrib>Gupta, Tulika ; Rajaraman, Gopalan</creatorcontrib><description>Molecular nanomagnets encompass a wide range of coordination complexes possessing several potential applications. A formidable challenge in realizing these potential applications lies in controlling the magnetic properties of these clusters. Microscopic spin Hamiltonian (SH) parameters describe the magnetic properties of these clusters, and viable ways to control these SH parameters are highly desirable. Computational tools play a proactive role in this area, where SH parameters such as isotropic exchange interaction (
J
), anisotropic exchange interaction (
J
x
,
J
y
,
J
z
), double exchange interaction (
B
), zero-field splitting parameters (
D
,
E
) and
g
-tensors can be computed reliably using X-ray structures. In this feature article, we have attempted to provide a holistic view of the modelling of these SH parameters of molecular magnets. The determination of
J
includes various class of molecules, from di- and polynuclear Mn complexes to the {3d-Gd}, {Gd-Gd} and {Gd-2p} class of complexes. The estimation of anisotropic exchange coupling includes the exchange between an isotropic metal ion and an orbitally degenerate 3d/4d/5d metal ion. The double-exchange section contains some illustrative examples of mixed valance systems, and the section on the estimation of zfs parameters covers some mononuclear transition metal complexes possessing very large axial zfs parameters. The section on the computation of
g
-anisotropy exclusively covers studies on mononuclear Dy
III
and Er
III
single-ion magnets. The examples depicted in this article clearly illustrate that computational tools not only aid in interpreting and rationalizing the observed magnetic properties but possess the potential to predict new generation MNMs.
With significant development in the computational methods applied to open-shell systems and tremendous improvements in computing resources, molecular modelling has become an integral part of the study of molecular magnetism. In this feature study, we have attempted to provide a bird's-eye view of the modelling of various spin Hamiltonian parameters of molecular nanomagnets.</description><identifier>ISSN: 1359-7345</identifier><identifier>EISSN: 1364-548X</identifier><identifier>DOI: 10.1039/c6cc01251e</identifier><identifier>PMID: 27366794</identifier><language>eng</language><publisher>England</publisher><subject>Clusters ; Computation ; Computer programs ; Exchange ; Ion exchange ; Magnetic properties ; Mathematical models ; Nanostructure</subject><ispartof>Chemical communications (Cambridge, England), 2016-07, Vol.52 (58), p.8972-98</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-98843f3e17fa09d9c71d633bf5e8e702bbc6ae271788ce92a7a1897fbfe000ce3</citedby><cites>FETCH-LOGICAL-c383t-98843f3e17fa09d9c71d633bf5e8e702bbc6ae271788ce92a7a1897fbfe000ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27366794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Tulika</creatorcontrib><creatorcontrib>Rajaraman, Gopalan</creatorcontrib><title>Modelling spin Hamiltonian parameters of molecular nanomagnets</title><title>Chemical communications (Cambridge, England)</title><addtitle>Chem Commun (Camb)</addtitle><description>Molecular nanomagnets encompass a wide range of coordination complexes possessing several potential applications. A formidable challenge in realizing these potential applications lies in controlling the magnetic properties of these clusters. Microscopic spin Hamiltonian (SH) parameters describe the magnetic properties of these clusters, and viable ways to control these SH parameters are highly desirable. Computational tools play a proactive role in this area, where SH parameters such as isotropic exchange interaction (
J
), anisotropic exchange interaction (
J
x
,
J
y
,
J
z
), double exchange interaction (
B
), zero-field splitting parameters (
D
,
E
) and
g
-tensors can be computed reliably using X-ray structures. In this feature article, we have attempted to provide a holistic view of the modelling of these SH parameters of molecular magnets. The determination of
J
includes various class of molecules, from di- and polynuclear Mn complexes to the {3d-Gd}, {Gd-Gd} and {Gd-2p} class of complexes. The estimation of anisotropic exchange coupling includes the exchange between an isotropic metal ion and an orbitally degenerate 3d/4d/5d metal ion. The double-exchange section contains some illustrative examples of mixed valance systems, and the section on the estimation of zfs parameters covers some mononuclear transition metal complexes possessing very large axial zfs parameters. The section on the computation of
g
-anisotropy exclusively covers studies on mononuclear Dy
III
and Er
III
single-ion magnets. The examples depicted in this article clearly illustrate that computational tools not only aid in interpreting and rationalizing the observed magnetic properties but possess the potential to predict new generation MNMs.
With significant development in the computational methods applied to open-shell systems and tremendous improvements in computing resources, molecular modelling has become an integral part of the study of molecular magnetism. In this feature study, we have attempted to provide a bird's-eye view of the modelling of various spin Hamiltonian parameters of molecular nanomagnets.</description><subject>Clusters</subject><subject>Computation</subject><subject>Computer programs</subject><subject>Exchange</subject><subject>Ion exchange</subject><subject>Magnetic properties</subject><subject>Mathematical models</subject><subject>Nanostructure</subject><issn>1359-7345</issn><issn>1364-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc1LxDAQxYMo7rp68a70KEI1aZqviyBldYUVLwreSppOlkqbrEl78L-3667r1bnMwPvxeLxB6JzgG4KpujXcGEwyRuAATQnlecpy-X64uZlKBc3ZBJ3E-IHHIUweo0kmKOdC5VN09-xraNvGrZK4blyy0F3T9t412iVrHXQHPYSYeJt0vgUztDokTjvf6ZWDPp6iI6vbCGe7PUNvD_PXYpEuXx6fivtlaqikfaqkzKmlQITVWNXKCFJzSivLQILAWVUZriETREhpQGVaaCKVsJWFMbMBOkNXW9918J8DxL7smmjG4NqBH2JJZMYYz6XM_oFiKpTMCRvR6y1qgo8xgC3Xoel0-CoJLjfVlgUvip9q5yN8ufMdqg7qPfrb5QhcbIEQzV79-w39Bvy1fX4</recordid><startdate>20160712</startdate><enddate>20160712</enddate><creator>Gupta, Tulika</creator><creator>Rajaraman, Gopalan</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160712</creationdate><title>Modelling spin Hamiltonian parameters of molecular nanomagnets</title><author>Gupta, Tulika ; Rajaraman, Gopalan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-98843f3e17fa09d9c71d633bf5e8e702bbc6ae271788ce92a7a1897fbfe000ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Clusters</topic><topic>Computation</topic><topic>Computer programs</topic><topic>Exchange</topic><topic>Ion exchange</topic><topic>Magnetic properties</topic><topic>Mathematical models</topic><topic>Nanostructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Tulika</creatorcontrib><creatorcontrib>Rajaraman, Gopalan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical communications (Cambridge, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Tulika</au><au>Rajaraman, Gopalan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling spin Hamiltonian parameters of molecular nanomagnets</atitle><jtitle>Chemical communications (Cambridge, England)</jtitle><addtitle>Chem Commun (Camb)</addtitle><date>2016-07-12</date><risdate>2016</risdate><volume>52</volume><issue>58</issue><spage>8972</spage><epage>98</epage><pages>8972-98</pages><issn>1359-7345</issn><eissn>1364-548X</eissn><abstract>Molecular nanomagnets encompass a wide range of coordination complexes possessing several potential applications. A formidable challenge in realizing these potential applications lies in controlling the magnetic properties of these clusters. Microscopic spin Hamiltonian (SH) parameters describe the magnetic properties of these clusters, and viable ways to control these SH parameters are highly desirable. Computational tools play a proactive role in this area, where SH parameters such as isotropic exchange interaction (
J
), anisotropic exchange interaction (
J
x
,
J
y
,
J
z
), double exchange interaction (
B
), zero-field splitting parameters (
D
,
E
) and
g
-tensors can be computed reliably using X-ray structures. In this feature article, we have attempted to provide a holistic view of the modelling of these SH parameters of molecular magnets. The determination of
J
includes various class of molecules, from di- and polynuclear Mn complexes to the {3d-Gd}, {Gd-Gd} and {Gd-2p} class of complexes. The estimation of anisotropic exchange coupling includes the exchange between an isotropic metal ion and an orbitally degenerate 3d/4d/5d metal ion. The double-exchange section contains some illustrative examples of mixed valance systems, and the section on the estimation of zfs parameters covers some mononuclear transition metal complexes possessing very large axial zfs parameters. The section on the computation of
g
-anisotropy exclusively covers studies on mononuclear Dy
III
and Er
III
single-ion magnets. The examples depicted in this article clearly illustrate that computational tools not only aid in interpreting and rationalizing the observed magnetic properties but possess the potential to predict new generation MNMs.
With significant development in the computational methods applied to open-shell systems and tremendous improvements in computing resources, molecular modelling has become an integral part of the study of molecular magnetism. In this feature study, we have attempted to provide a bird's-eye view of the modelling of various spin Hamiltonian parameters of molecular nanomagnets.</abstract><cop>England</cop><pmid>27366794</pmid><doi>10.1039/c6cc01251e</doi><tpages>37</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-7345 |
ispartof | Chemical communications (Cambridge, England), 2016-07, Vol.52 (58), p.8972-98 |
issn | 1359-7345 1364-548X |
language | eng |
recordid | cdi_proquest_miscellaneous_1825564882 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Clusters Computation Computer programs Exchange Ion exchange Magnetic properties Mathematical models Nanostructure |
title | Modelling spin Hamiltonian parameters of molecular nanomagnets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20spin%20Hamiltonian%20parameters%20of%20molecular%20nanomagnets&rft.jtitle=Chemical%20communications%20(Cambridge,%20England)&rft.au=Gupta,%20Tulika&rft.date=2016-07-12&rft.volume=52&rft.issue=58&rft.spage=8972&rft.epage=98&rft.pages=8972-98&rft.issn=1359-7345&rft.eissn=1364-548X&rft_id=info:doi/10.1039/c6cc01251e&rft_dat=%3Cproquest_pubme%3E1825564882%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1803798415&rft_id=info:pmid/27366794&rfr_iscdi=true |