Comparison of artificial intelligence methods and empirical equations to estimate daily solar radiation

In the present research, three artificial intelligence methods including Gene Expression Programming (GEP), Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) as well as, 48 empirical equations (10, 12 and 26 equations were temperature-based, sunshine-based and meteor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and solar-terrestrial physics 2016-08, Vol.146, p.215-227
Hauptverfasser: Mehdizadeh, Saeid, Behmanesh, Javad, Khalili, Keivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 227
container_issue
container_start_page 215
container_title Journal of atmospheric and solar-terrestrial physics
container_volume 146
creator Mehdizadeh, Saeid
Behmanesh, Javad
Khalili, Keivan
description In the present research, three artificial intelligence methods including Gene Expression Programming (GEP), Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) as well as, 48 empirical equations (10, 12 and 26 equations were temperature-based, sunshine-based and meteorological parameters-based, respectively) were used to estimate daily solar radiation in Kerman, Iran in the period of 1992–2009. To develop the GEP, ANN and ANFIS models, depending on the used empirical equations, various combinations of minimum air temperature, maximum air temperature, mean air temperature, extraterrestrial radiation, actual sunshine duration, maximum possible sunshine duration, sunshine duration ratio, relative humidity and precipitation were considered as inputs in the mentioned intelligent methods. To compare the accuracy of empirical equations and intelligent models, root mean square error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE) and determination coefficient (R2) indices were used. The results showed that in general, sunshine-based and meteorological parameters-based scenarios in ANN and ANFIS models presented high accuracy than mentioned empirical equations. Moreover, the most accurate method in the studied region was ANN11 scenario with five inputs. The values of RMSE, MAE, MARE and R2 indices for the mentioned model were 1.850MJm−2 day−1, 1.184MJm−2 day-1, 9.58% and 0.935, respectively. •Daily solar radiation was estimated by 48 empirical equations in Kerman, Iran.•The ability of GEP, ANN and ANFIS was evaluated to estimate daily solar radiation.•In general, ANN and ANFIS had good performance than GEP and empirical equations.•ANN11 scenario with full inputs was the most accurate model.
doi_str_mv 10.1016/j.jastp.2016.06.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825561525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364682616301481</els_id><sourcerecordid>1808660056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-65e5d02c003387895ccfacece3e3ed3a22b978cae96d5e8ed0d53681975e658e3</originalsourceid><addsrcrecordid>eNqNkU9LxDAQxYsoqKufwEuOXrpOG5OmBw-y-A8WvOg5xGSqs7RNTbLCfntT17NIBjIDvxfy5hXFRQXLCip5tVluTEzTss7DEnKBPChOKtW0ZaXq68Pcc3ldSlXL4-I0xg0ANLWSJ8X7yg-TCRT9yHzHTEjUkSXTMxoT9j2942iRDZg-vIvMjI7hMFEgmxH83JpEfowseYYx0WASMmeo37HoexNYMI5-kLPiqDN9xPPfe1G83t-9rB7L9fPD0-p2XVou21RKgcJBbQE4V41qhbWdsWiR5-O4qeu3tlHWYCudQIUOnOBSVW0jUAqFfFFc7t-dgv_c5j_pgaLNRsyIfht1XocQshK1-AcKSkoAITPK96gNPsaAnZ5CNht2ugI9J6A3-icBPSegIRfMqpu9CrPhL8Kgo6V5nY4C2qSdpz_133Hlkl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808660056</pqid></control><display><type>article</type><title>Comparison of artificial intelligence methods and empirical equations to estimate daily solar radiation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Mehdizadeh, Saeid ; Behmanesh, Javad ; Khalili, Keivan</creator><creatorcontrib>Mehdizadeh, Saeid ; Behmanesh, Javad ; Khalili, Keivan</creatorcontrib><description>In the present research, three artificial intelligence methods including Gene Expression Programming (GEP), Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) as well as, 48 empirical equations (10, 12 and 26 equations were temperature-based, sunshine-based and meteorological parameters-based, respectively) were used to estimate daily solar radiation in Kerman, Iran in the period of 1992–2009. To develop the GEP, ANN and ANFIS models, depending on the used empirical equations, various combinations of minimum air temperature, maximum air temperature, mean air temperature, extraterrestrial radiation, actual sunshine duration, maximum possible sunshine duration, sunshine duration ratio, relative humidity and precipitation were considered as inputs in the mentioned intelligent methods. To compare the accuracy of empirical equations and intelligent models, root mean square error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE) and determination coefficient (R2) indices were used. The results showed that in general, sunshine-based and meteorological parameters-based scenarios in ANN and ANFIS models presented high accuracy than mentioned empirical equations. Moreover, the most accurate method in the studied region was ANN11 scenario with five inputs. The values of RMSE, MAE, MARE and R2 indices for the mentioned model were 1.850MJm−2 day−1, 1.184MJm−2 day-1, 9.58% and 0.935, respectively. •Daily solar radiation was estimated by 48 empirical equations in Kerman, Iran.•The ability of GEP, ANN and ANFIS was evaluated to estimate daily solar radiation.•In general, ANN and ANFIS had good performance than GEP and empirical equations.•ANN11 scenario with full inputs was the most accurate model.</description><identifier>ISSN: 1364-6826</identifier><identifier>EISSN: 1879-1824</identifier><identifier>DOI: 10.1016/j.jastp.2016.06.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Adaptive Neuro-Fuzzy Inference System ; Adaptive systems ; Artificial Neural Networks ; Empirical equations ; Errors ; Fuzzy logic ; Gene Expression Programming ; Learning theory ; Neural networks ; Solar radiation ; Sunlight</subject><ispartof>Journal of atmospheric and solar-terrestrial physics, 2016-08, Vol.146, p.215-227</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-65e5d02c003387895ccfacece3e3ed3a22b978cae96d5e8ed0d53681975e658e3</citedby><cites>FETCH-LOGICAL-c369t-65e5d02c003387895ccfacece3e3ed3a22b978cae96d5e8ed0d53681975e658e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jastp.2016.06.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Mehdizadeh, Saeid</creatorcontrib><creatorcontrib>Behmanesh, Javad</creatorcontrib><creatorcontrib>Khalili, Keivan</creatorcontrib><title>Comparison of artificial intelligence methods and empirical equations to estimate daily solar radiation</title><title>Journal of atmospheric and solar-terrestrial physics</title><description>In the present research, three artificial intelligence methods including Gene Expression Programming (GEP), Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) as well as, 48 empirical equations (10, 12 and 26 equations were temperature-based, sunshine-based and meteorological parameters-based, respectively) were used to estimate daily solar radiation in Kerman, Iran in the period of 1992–2009. To develop the GEP, ANN and ANFIS models, depending on the used empirical equations, various combinations of minimum air temperature, maximum air temperature, mean air temperature, extraterrestrial radiation, actual sunshine duration, maximum possible sunshine duration, sunshine duration ratio, relative humidity and precipitation were considered as inputs in the mentioned intelligent methods. To compare the accuracy of empirical equations and intelligent models, root mean square error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE) and determination coefficient (R2) indices were used. The results showed that in general, sunshine-based and meteorological parameters-based scenarios in ANN and ANFIS models presented high accuracy than mentioned empirical equations. Moreover, the most accurate method in the studied region was ANN11 scenario with five inputs. The values of RMSE, MAE, MARE and R2 indices for the mentioned model were 1.850MJm−2 day−1, 1.184MJm−2 day-1, 9.58% and 0.935, respectively. •Daily solar radiation was estimated by 48 empirical equations in Kerman, Iran.•The ability of GEP, ANN and ANFIS was evaluated to estimate daily solar radiation.•In general, ANN and ANFIS had good performance than GEP and empirical equations.•ANN11 scenario with full inputs was the most accurate model.</description><subject>Adaptive Neuro-Fuzzy Inference System</subject><subject>Adaptive systems</subject><subject>Artificial Neural Networks</subject><subject>Empirical equations</subject><subject>Errors</subject><subject>Fuzzy logic</subject><subject>Gene Expression Programming</subject><subject>Learning theory</subject><subject>Neural networks</subject><subject>Solar radiation</subject><subject>Sunlight</subject><issn>1364-6826</issn><issn>1879-1824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU9LxDAQxYsoqKufwEuOXrpOG5OmBw-y-A8WvOg5xGSqs7RNTbLCfntT17NIBjIDvxfy5hXFRQXLCip5tVluTEzTss7DEnKBPChOKtW0ZaXq68Pcc3ldSlXL4-I0xg0ANLWSJ8X7yg-TCRT9yHzHTEjUkSXTMxoT9j2942iRDZg-vIvMjI7hMFEgmxH83JpEfowseYYx0WASMmeo37HoexNYMI5-kLPiqDN9xPPfe1G83t-9rB7L9fPD0-p2XVou21RKgcJBbQE4V41qhbWdsWiR5-O4qeu3tlHWYCudQIUOnOBSVW0jUAqFfFFc7t-dgv_c5j_pgaLNRsyIfht1XocQshK1-AcKSkoAITPK96gNPsaAnZ5CNht2ugI9J6A3-icBPSegIRfMqpu9CrPhL8Kgo6V5nY4C2qSdpz_133Hlkl4</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Mehdizadeh, Saeid</creator><creator>Behmanesh, Javad</creator><creator>Khalili, Keivan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201608</creationdate><title>Comparison of artificial intelligence methods and empirical equations to estimate daily solar radiation</title><author>Mehdizadeh, Saeid ; Behmanesh, Javad ; Khalili, Keivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-65e5d02c003387895ccfacece3e3ed3a22b978cae96d5e8ed0d53681975e658e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive Neuro-Fuzzy Inference System</topic><topic>Adaptive systems</topic><topic>Artificial Neural Networks</topic><topic>Empirical equations</topic><topic>Errors</topic><topic>Fuzzy logic</topic><topic>Gene Expression Programming</topic><topic>Learning theory</topic><topic>Neural networks</topic><topic>Solar radiation</topic><topic>Sunlight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehdizadeh, Saeid</creatorcontrib><creatorcontrib>Behmanesh, Javad</creatorcontrib><creatorcontrib>Khalili, Keivan</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of atmospheric and solar-terrestrial physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehdizadeh, Saeid</au><au>Behmanesh, Javad</au><au>Khalili, Keivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of artificial intelligence methods and empirical equations to estimate daily solar radiation</atitle><jtitle>Journal of atmospheric and solar-terrestrial physics</jtitle><date>2016-08</date><risdate>2016</risdate><volume>146</volume><spage>215</spage><epage>227</epage><pages>215-227</pages><issn>1364-6826</issn><eissn>1879-1824</eissn><abstract>In the present research, three artificial intelligence methods including Gene Expression Programming (GEP), Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) as well as, 48 empirical equations (10, 12 and 26 equations were temperature-based, sunshine-based and meteorological parameters-based, respectively) were used to estimate daily solar radiation in Kerman, Iran in the period of 1992–2009. To develop the GEP, ANN and ANFIS models, depending on the used empirical equations, various combinations of minimum air temperature, maximum air temperature, mean air temperature, extraterrestrial radiation, actual sunshine duration, maximum possible sunshine duration, sunshine duration ratio, relative humidity and precipitation were considered as inputs in the mentioned intelligent methods. To compare the accuracy of empirical equations and intelligent models, root mean square error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE) and determination coefficient (R2) indices were used. The results showed that in general, sunshine-based and meteorological parameters-based scenarios in ANN and ANFIS models presented high accuracy than mentioned empirical equations. Moreover, the most accurate method in the studied region was ANN11 scenario with five inputs. The values of RMSE, MAE, MARE and R2 indices for the mentioned model were 1.850MJm−2 day−1, 1.184MJm−2 day-1, 9.58% and 0.935, respectively. •Daily solar radiation was estimated by 48 empirical equations in Kerman, Iran.•The ability of GEP, ANN and ANFIS was evaluated to estimate daily solar radiation.•In general, ANN and ANFIS had good performance than GEP and empirical equations.•ANN11 scenario with full inputs was the most accurate model.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jastp.2016.06.006</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-6826
ispartof Journal of atmospheric and solar-terrestrial physics, 2016-08, Vol.146, p.215-227
issn 1364-6826
1879-1824
language eng
recordid cdi_proquest_miscellaneous_1825561525
source Access via ScienceDirect (Elsevier)
subjects Adaptive Neuro-Fuzzy Inference System
Adaptive systems
Artificial Neural Networks
Empirical equations
Errors
Fuzzy logic
Gene Expression Programming
Learning theory
Neural networks
Solar radiation
Sunlight
title Comparison of artificial intelligence methods and empirical equations to estimate daily solar radiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20artificial%20intelligence%20methods%20and%20empirical%20equations%20to%20estimate%20daily%20solar%20radiation&rft.jtitle=Journal%20of%20atmospheric%20and%20solar-terrestrial%20physics&rft.au=Mehdizadeh,%20Saeid&rft.date=2016-08&rft.volume=146&rft.spage=215&rft.epage=227&rft.pages=215-227&rft.issn=1364-6826&rft.eissn=1879-1824&rft_id=info:doi/10.1016/j.jastp.2016.06.006&rft_dat=%3Cproquest_cross%3E1808660056%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808660056&rft_id=info:pmid/&rft_els_id=S1364682616301481&rfr_iscdi=true