Successive approximation and optimal controls on fractional neutral stochastic differential equations with Poisson jumps

Summary The objective of this paper is to investigate the existence of mild solutions and optimal controls for a class of fractional neutral stochastic differential equations with Poisson jumps in Hilbert spaces. First, we establish a new set of sufficient conditions for the existence of mild soluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimal control applications & methods 2016-07, Vol.37 (4), p.627-640
Hauptverfasser: Rajivganthi, C., Muthukumar, P., Ganesh Priya, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 640
container_issue 4
container_start_page 627
container_title Optimal control applications & methods
container_volume 37
creator Rajivganthi, C.
Muthukumar, P.
Ganesh Priya, B.
description Summary The objective of this paper is to investigate the existence of mild solutions and optimal controls for a class of fractional neutral stochastic differential equations with Poisson jumps in Hilbert spaces. First, we establish a new set of sufficient conditions for the existence of mild solutions of the aforementioned fractional systems by using the successive approximation approach. The results are formulated and proved by using the fractional calculus, solution operator, and stochastic analysis techniques. The existence of optimal control pairs of system governed by fractional neutral stochastic differential equations with Poisson jumps is also presented. An example is given to illustrate the theory. Copyright © 2015 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/oca.2184
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825559663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825559663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3644-ece73089326e0b2b91529abbb54561fce4ad761d57c93cabf7115fa0b6a44acd3</originalsourceid><addsrcrecordid>eNp1kV9r1EAUxQdRcK2CHyHgiy-pczP_No9l0VUsVmzFx2EyuaGzZjPp3Em7_fbOWlEUfDrcw48D5x7GXgI_Bc6bN9G70wbW8hFbAW_bGhTIx2zFQYq64WvzlD0j2nHODYhmxQ6Xi_dIFG6xcvOc4iHsXQ5xqtzUV3HO5RwrH6ec4khV8Yfk_BEo9oRLTkUpR3_tKAdf9WEYMOGUQ_HxZvmZRdVdyNfV5xiISsJu2c_0nD0Z3Ej44peesK_v3l5t3tfnF9sPm7Pz2gstZY0ejeDrVjQaedd0LaimdV3XKak0DB6l642GXhnfCu-6wQCowfFOOymd78UJe_2QW7rdLEjZ7gN5HEc3YVzIwrpRSrVai4K--gfdxSWVokeKg2lBGPEn0KdIlHCwcypPSvcWuD1OYMsE9jhBQesH9C6MeP9fzl5szv7mA2U8_OZd-m61EUbZb5-2VvPtpfzy8cpuxA82sJmT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1801791373</pqid></control><display><type>article</type><title>Successive approximation and optimal controls on fractional neutral stochastic differential equations with Poisson jumps</title><source>Wiley Journals</source><creator>Rajivganthi, C. ; Muthukumar, P. ; Ganesh Priya, B.</creator><creatorcontrib>Rajivganthi, C. ; Muthukumar, P. ; Ganesh Priya, B.</creatorcontrib><description>Summary The objective of this paper is to investigate the existence of mild solutions and optimal controls for a class of fractional neutral stochastic differential equations with Poisson jumps in Hilbert spaces. First, we establish a new set of sufficient conditions for the existence of mild solutions of the aforementioned fractional systems by using the successive approximation approach. The results are formulated and proved by using the fractional calculus, solution operator, and stochastic analysis techniques. The existence of optimal control pairs of system governed by fractional neutral stochastic differential equations with Poisson jumps is also presented. An example is given to illustrate the theory. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.2184</identifier><identifier>CODEN: OCAMD5</identifier><language>eng</language><publisher>Glasgow: Blackwell Publishing Ltd</publisher><subject>Approximation ; Calculus ; Differential equations ; fractional stochastic differential equations ; Hilbert space ; Mathematical analysis ; Operators ; Optimal control ; Poisson jumps ; Stochasticity</subject><ispartof>Optimal control applications &amp; methods, 2016-07, Vol.37 (4), p.627-640</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3644-ece73089326e0b2b91529abbb54561fce4ad761d57c93cabf7115fa0b6a44acd3</citedby><cites>FETCH-LOGICAL-c3644-ece73089326e0b2b91529abbb54561fce4ad761d57c93cabf7115fa0b6a44acd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Foca.2184$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Foca.2184$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Rajivganthi, C.</creatorcontrib><creatorcontrib>Muthukumar, P.</creatorcontrib><creatorcontrib>Ganesh Priya, B.</creatorcontrib><title>Successive approximation and optimal controls on fractional neutral stochastic differential equations with Poisson jumps</title><title>Optimal control applications &amp; methods</title><addtitle>Optim. Control Appl. Meth</addtitle><description>Summary The objective of this paper is to investigate the existence of mild solutions and optimal controls for a class of fractional neutral stochastic differential equations with Poisson jumps in Hilbert spaces. First, we establish a new set of sufficient conditions for the existence of mild solutions of the aforementioned fractional systems by using the successive approximation approach. The results are formulated and proved by using the fractional calculus, solution operator, and stochastic analysis techniques. The existence of optimal control pairs of system governed by fractional neutral stochastic differential equations with Poisson jumps is also presented. An example is given to illustrate the theory. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><subject>Approximation</subject><subject>Calculus</subject><subject>Differential equations</subject><subject>fractional stochastic differential equations</subject><subject>Hilbert space</subject><subject>Mathematical analysis</subject><subject>Operators</subject><subject>Optimal control</subject><subject>Poisson jumps</subject><subject>Stochasticity</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kV9r1EAUxQdRcK2CHyHgiy-pczP_No9l0VUsVmzFx2EyuaGzZjPp3Em7_fbOWlEUfDrcw48D5x7GXgI_Bc6bN9G70wbW8hFbAW_bGhTIx2zFQYq64WvzlD0j2nHODYhmxQ6Xi_dIFG6xcvOc4iHsXQ5xqtzUV3HO5RwrH6ec4khV8Yfk_BEo9oRLTkUpR3_tKAdf9WEYMOGUQ_HxZvmZRdVdyNfV5xiISsJu2c_0nD0Z3Ej44peesK_v3l5t3tfnF9sPm7Pz2gstZY0ejeDrVjQaedd0LaimdV3XKak0DB6l642GXhnfCu-6wQCowfFOOymd78UJe_2QW7rdLEjZ7gN5HEc3YVzIwrpRSrVai4K--gfdxSWVokeKg2lBGPEn0KdIlHCwcypPSvcWuD1OYMsE9jhBQesH9C6MeP9fzl5szv7mA2U8_OZd-m61EUbZb5-2VvPtpfzy8cpuxA82sJmT</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Rajivganthi, C.</creator><creator>Muthukumar, P.</creator><creator>Ganesh Priya, B.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>201607</creationdate><title>Successive approximation and optimal controls on fractional neutral stochastic differential equations with Poisson jumps</title><author>Rajivganthi, C. ; Muthukumar, P. ; Ganesh Priya, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3644-ece73089326e0b2b91529abbb54561fce4ad761d57c93cabf7115fa0b6a44acd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Calculus</topic><topic>Differential equations</topic><topic>fractional stochastic differential equations</topic><topic>Hilbert space</topic><topic>Mathematical analysis</topic><topic>Operators</topic><topic>Optimal control</topic><topic>Poisson jumps</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajivganthi, C.</creatorcontrib><creatorcontrib>Muthukumar, P.</creatorcontrib><creatorcontrib>Ganesh Priya, B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optimal control applications &amp; methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajivganthi, C.</au><au>Muthukumar, P.</au><au>Ganesh Priya, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Successive approximation and optimal controls on fractional neutral stochastic differential equations with Poisson jumps</atitle><jtitle>Optimal control applications &amp; methods</jtitle><addtitle>Optim. Control Appl. Meth</addtitle><date>2016-07</date><risdate>2016</risdate><volume>37</volume><issue>4</issue><spage>627</spage><epage>640</epage><pages>627-640</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><coden>OCAMD5</coden><abstract>Summary The objective of this paper is to investigate the existence of mild solutions and optimal controls for a class of fractional neutral stochastic differential equations with Poisson jumps in Hilbert spaces. First, we establish a new set of sufficient conditions for the existence of mild solutions of the aforementioned fractional systems by using the successive approximation approach. The results are formulated and proved by using the fractional calculus, solution operator, and stochastic analysis techniques. The existence of optimal control pairs of system governed by fractional neutral stochastic differential equations with Poisson jumps is also presented. An example is given to illustrate the theory. Copyright © 2015 John Wiley &amp; Sons, Ltd.</abstract><cop>Glasgow</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/oca.2184</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-2087
ispartof Optimal control applications & methods, 2016-07, Vol.37 (4), p.627-640
issn 0143-2087
1099-1514
language eng
recordid cdi_proquest_miscellaneous_1825559663
source Wiley Journals
subjects Approximation
Calculus
Differential equations
fractional stochastic differential equations
Hilbert space
Mathematical analysis
Operators
Optimal control
Poisson jumps
Stochasticity
title Successive approximation and optimal controls on fractional neutral stochastic differential equations with Poisson jumps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A42%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Successive%20approximation%20and%20optimal%20controls%20on%20fractional%20neutral%20stochastic%20differential%20equations%20with%20Poisson%20jumps&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Rajivganthi,%20C.&rft.date=2016-07&rft.volume=37&rft.issue=4&rft.spage=627&rft.epage=640&rft.pages=627-640&rft.issn=0143-2087&rft.eissn=1099-1514&rft.coden=OCAMD5&rft_id=info:doi/10.1002/oca.2184&rft_dat=%3Cproquest_cross%3E1825559663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1801791373&rft_id=info:pmid/&rfr_iscdi=true