The evolution of positively curved invariant Riemannian metrics on the Wallach spaces under the Ricci flow
This paper is devoted to the study of the evolution of positively curved metrics on the Wallach spaces SU ( 3 ) / T max , Sp ( 3 ) / Sp ( 1 ) × Sp ( 1 ) × Sp ( 1 ) , and F 4 / Spin ( 8 ) . We prove that for all Wallach spaces, the normalized Ricci flow evolves all generic invariant Riemannian metric...
Gespeichert in:
Veröffentlicht in: | Annals of global analysis and geometry 2016-07, Vol.50 (1), p.65-84 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | 1 |
container_start_page | 65 |
container_title | Annals of global analysis and geometry |
container_volume | 50 |
creator | Abiev, Nurlan Abievich Nikonorov, Yuriĭ Gennadievich |
description | This paper is devoted to the study of the evolution of positively curved metrics on the Wallach spaces
SU
(
3
)
/
T
max
,
Sp
(
3
)
/
Sp
(
1
)
×
Sp
(
1
)
×
Sp
(
1
)
, and
F
4
/
Spin
(
8
)
. We prove that for all Wallach spaces, the normalized Ricci flow evolves all generic invariant Riemannian metrics with positive sectional curvature into metrics with mixed sectional curvature. Moreover, we prove that for the spaces
Sp
(
3
)
/
Sp
(
1
)
×
Sp
(
1
)
×
Sp
(
1
)
and
F
4
/
Spin
(
8
)
, the normalized Ricci flow evolves all generic invariant Riemannian metrics with positive Ricci curvature into metrics with mixed Ricci curvature. We also get similar results for some more general homogeneous spaces. |
doi_str_mv | 10.1007/s10455-016-9502-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825558350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4114558961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-60ee5e89b8eb27c7fe57350df2970252f088cde2f3da0cedfe34f6576dbaae423</originalsourceid><addsrcrecordid>eNp1kM1KLDEQhYMoOP48gLvA3bhprSSdTvfyIv6BIIiiu5BJVzRDTzIm3SO-vdFxIYKrKqjvHIqPkCMGJwxAnWYGtZQVsKbqJPCq3SIzJhWvOmhgm8yAC14pqJ92yV7OCwCQgrEZWdy_IMV1HKbRx0Cjo6uY_ejXOLxTO6U19tSHtUnehJHeeVyaEMpOlzgmbzMtobFUPJphMPaF5pWxmOkUekxfhztvraduiG8HZMeZIePh99wnDxfn92dX1c3t5fXZ_5vKirobqwYQJbbdvMU5V1Y5lEpI6B3vFHDJHbSt7ZE70Ruw2DsUtWukavq5MVhzsU-ON72rFF8nzKNe-myx_BcwTlmzlksp29JZ0H-_0EWcUijfFQoEF4qxrlBsQ9kUc07o9Cr5pUnvmoH-tK839nWxrz_t67Zk-CaTCxueMf1o_jP0AYCTiPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1803237119</pqid></control><display><type>article</type><title>The evolution of positively curved invariant Riemannian metrics on the Wallach spaces under the Ricci flow</title><source>Springer Nature - Complete Springer Journals</source><creator>Abiev, Nurlan Abievich ; Nikonorov, Yuriĭ Gennadievich</creator><creatorcontrib>Abiev, Nurlan Abievich ; Nikonorov, Yuriĭ Gennadievich</creatorcontrib><description>This paper is devoted to the study of the evolution of positively curved metrics on the Wallach spaces
SU
(
3
)
/
T
max
,
Sp
(
3
)
/
Sp
(
1
)
×
Sp
(
1
)
×
Sp
(
1
)
, and
F
4
/
Spin
(
8
)
. We prove that for all Wallach spaces, the normalized Ricci flow evolves all generic invariant Riemannian metrics with positive sectional curvature into metrics with mixed sectional curvature. Moreover, we prove that for the spaces
Sp
(
3
)
/
Sp
(
1
)
×
Sp
(
1
)
×
Sp
(
1
)
and
F
4
/
Spin
(
8
)
, the normalized Ricci flow evolves all generic invariant Riemannian metrics with positive Ricci curvature into metrics with mixed Ricci curvature. We also get similar results for some more general homogeneous spaces.</description><identifier>ISSN: 0232-704X</identifier><identifier>EISSN: 1572-9060</identifier><identifier>DOI: 10.1007/s10455-016-9502-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebra ; Analysis ; Curvature ; Curved ; Differential Geometry ; Evolution ; Geometry ; Global Analysis and Analysis on Manifolds ; Invariants ; Mathematical analysis ; Mathematical models ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Studies ; Texts ; Theorems ; Topological manifolds</subject><ispartof>Annals of global analysis and geometry, 2016-07, Vol.50 (1), p.65-84</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-60ee5e89b8eb27c7fe57350df2970252f088cde2f3da0cedfe34f6576dbaae423</citedby><cites>FETCH-LOGICAL-c349t-60ee5e89b8eb27c7fe57350df2970252f088cde2f3da0cedfe34f6576dbaae423</cites><orcidid>0000-0002-9671-2314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10455-016-9502-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10455-016-9502-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Abiev, Nurlan Abievich</creatorcontrib><creatorcontrib>Nikonorov, Yuriĭ Gennadievich</creatorcontrib><title>The evolution of positively curved invariant Riemannian metrics on the Wallach spaces under the Ricci flow</title><title>Annals of global analysis and geometry</title><addtitle>Ann Glob Anal Geom</addtitle><description>This paper is devoted to the study of the evolution of positively curved metrics on the Wallach spaces
SU
(
3
)
/
T
max
,
Sp
(
3
)
/
Sp
(
1
)
×
Sp
(
1
)
×
Sp
(
1
)
, and
F
4
/
Spin
(
8
)
. We prove that for all Wallach spaces, the normalized Ricci flow evolves all generic invariant Riemannian metrics with positive sectional curvature into metrics with mixed sectional curvature. Moreover, we prove that for the spaces
Sp
(
3
)
/
Sp
(
1
)
×
Sp
(
1
)
×
Sp
(
1
)
and
F
4
/
Spin
(
8
)
, the normalized Ricci flow evolves all generic invariant Riemannian metrics with positive Ricci curvature into metrics with mixed Ricci curvature. We also get similar results for some more general homogeneous spaces.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Curvature</subject><subject>Curved</subject><subject>Differential Geometry</subject><subject>Evolution</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Studies</subject><subject>Texts</subject><subject>Theorems</subject><subject>Topological manifolds</subject><issn>0232-704X</issn><issn>1572-9060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1KLDEQhYMoOP48gLvA3bhprSSdTvfyIv6BIIiiu5BJVzRDTzIm3SO-vdFxIYKrKqjvHIqPkCMGJwxAnWYGtZQVsKbqJPCq3SIzJhWvOmhgm8yAC14pqJ92yV7OCwCQgrEZWdy_IMV1HKbRx0Cjo6uY_ejXOLxTO6U19tSHtUnehJHeeVyaEMpOlzgmbzMtobFUPJphMPaF5pWxmOkUekxfhztvraduiG8HZMeZIePh99wnDxfn92dX1c3t5fXZ_5vKirobqwYQJbbdvMU5V1Y5lEpI6B3vFHDJHbSt7ZE70Ruw2DsUtWukavq5MVhzsU-ON72rFF8nzKNe-myx_BcwTlmzlksp29JZ0H-_0EWcUijfFQoEF4qxrlBsQ9kUc07o9Cr5pUnvmoH-tK839nWxrz_t67Zk-CaTCxueMf1o_jP0AYCTiPs</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Abiev, Nurlan Abievich</creator><creator>Nikonorov, Yuriĭ Gennadievich</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9671-2314</orcidid></search><sort><creationdate>20160701</creationdate><title>The evolution of positively curved invariant Riemannian metrics on the Wallach spaces under the Ricci flow</title><author>Abiev, Nurlan Abievich ; Nikonorov, Yuriĭ Gennadievich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-60ee5e89b8eb27c7fe57350df2970252f088cde2f3da0cedfe34f6576dbaae423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Curvature</topic><topic>Curved</topic><topic>Differential Geometry</topic><topic>Evolution</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Studies</topic><topic>Texts</topic><topic>Theorems</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abiev, Nurlan Abievich</creatorcontrib><creatorcontrib>Nikonorov, Yuriĭ Gennadievich</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of global analysis and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abiev, Nurlan Abievich</au><au>Nikonorov, Yuriĭ Gennadievich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The evolution of positively curved invariant Riemannian metrics on the Wallach spaces under the Ricci flow</atitle><jtitle>Annals of global analysis and geometry</jtitle><stitle>Ann Glob Anal Geom</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>50</volume><issue>1</issue><spage>65</spage><epage>84</epage><pages>65-84</pages><issn>0232-704X</issn><eissn>1572-9060</eissn><abstract>This paper is devoted to the study of the evolution of positively curved metrics on the Wallach spaces
SU
(
3
)
/
T
max
,
Sp
(
3
)
/
Sp
(
1
)
×
Sp
(
1
)
×
Sp
(
1
)
, and
F
4
/
Spin
(
8
)
. We prove that for all Wallach spaces, the normalized Ricci flow evolves all generic invariant Riemannian metrics with positive sectional curvature into metrics with mixed sectional curvature. Moreover, we prove that for the spaces
Sp
(
3
)
/
Sp
(
1
)
×
Sp
(
1
)
×
Sp
(
1
)
and
F
4
/
Spin
(
8
)
, the normalized Ricci flow evolves all generic invariant Riemannian metrics with positive Ricci curvature into metrics with mixed Ricci curvature. We also get similar results for some more general homogeneous spaces.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10455-016-9502-8</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9671-2314</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0232-704X |
ispartof | Annals of global analysis and geometry, 2016-07, Vol.50 (1), p.65-84 |
issn | 0232-704X 1572-9060 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825558350 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebra Analysis Curvature Curved Differential Geometry Evolution Geometry Global Analysis and Analysis on Manifolds Invariants Mathematical analysis Mathematical models Mathematical Physics Mathematics Mathematics and Statistics Studies Texts Theorems Topological manifolds |
title | The evolution of positively curved invariant Riemannian metrics on the Wallach spaces under the Ricci flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20evolution%20of%20positively%20curved%20invariant%20Riemannian%20metrics%20on%20the%20Wallach%20spaces%20under%20the%20Ricci%20flow&rft.jtitle=Annals%20of%20global%20analysis%20and%20geometry&rft.au=Abiev,%20Nurlan%20Abievich&rft.date=2016-07-01&rft.volume=50&rft.issue=1&rft.spage=65&rft.epage=84&rft.pages=65-84&rft.issn=0232-704X&rft.eissn=1572-9060&rft_id=info:doi/10.1007/s10455-016-9502-8&rft_dat=%3Cproquest_cross%3E4114558961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1803237119&rft_id=info:pmid/&rfr_iscdi=true |