When two reactions become one
Merging two fundamental reactions of organoboron compounds provides a new platform for catalysis [Also see Report by Zhang et al. ] Organoboron compounds are among the most widely used reagents in organic synthesis and underpin many of the most frequently practiced and important reactions in synthet...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2016-01, Vol.351 (6268), p.26-27 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | 6268 |
container_start_page | 26 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 351 |
creator | Fyfe, James W. B. Watson, Allan J. B. |
description | Merging two fundamental reactions of organoboron compounds provides a new platform for catalysis
[Also see Report by
Zhang
et al.
]
Organoboron compounds are among the most widely used reagents in organic synthesis and underpin many of the most frequently practiced and important reactions in synthetic organic chemistry (
1
). These reactions are based on specific mechanistic events that are distinctive to the reaction class. Catalytic processes are usually driven by transmetallation to transition metal complexes (passing a ligand from boron to the metal), whereas stoichiometric processes are based on metallate rearrangement mechanisms—ligands undergoing redistribution around a boron center—initiated by an incoming nucleophile. On page 70 of this issue, Zhang
et al.
(
2
) report an alternative transmetallation process that harmoniously merges these usually independent mechanisms, and they demonstrate its application within a multicomponent catalytic reaction that generates specific chiral products. |
doi_str_mv | 10.1126/science.aad8698 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825558250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24741378</jstor_id><sourcerecordid>24741378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-8014c716ac2bd35229b97a74e2a4c86cb1334168dd3223cdaeefe4ed424401053</originalsourceid><addsrcrecordid>eNpdkD1LA0EQhhdRMEZrq8CBjc0lM_t1e6UEvyBgo1gue3sTvJDcxt0L4r93JYeFzUwxz_syPIxdI8wRuV4k31Hvae5ca3RtTtgEoVZlzUGcsgmA0KWBSp2zi5Q2APlWiwmbvX9QXwxfoYjk_NCFPhUN-bCjIvR0yc7WbpvoatxT9vZw_7p8Klcvj8_Lu1XpOZgh96L0FWrnedMKxXnd1JWrJHEnvdG-QSEkatO2gnPhW0e0Jkmt5FICghJTdnvs3cfweaA02F2XPG23rqdwSBYNV0rlARm9-YduwiH2-TuLlRKglTSYqcWR8jGkFGlt97HbufhtEeyvLjvqsqOunJgdE5s0hPiHc1lJFJURP6twZtY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753065481</pqid></control><display><type>article</type><title>When two reactions become one</title><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Fyfe, James W. B. ; Watson, Allan J. B.</creator><creatorcontrib>Fyfe, James W. B. ; Watson, Allan J. B.</creatorcontrib><description>Merging two fundamental reactions of organoboron compounds provides a new platform for catalysis
[Also see Report by
Zhang
et al.
]
Organoboron compounds are among the most widely used reagents in organic synthesis and underpin many of the most frequently practiced and important reactions in synthetic organic chemistry (
1
). These reactions are based on specific mechanistic events that are distinctive to the reaction class. Catalytic processes are usually driven by transmetallation to transition metal complexes (passing a ligand from boron to the metal), whereas stoichiometric processes are based on metallate rearrangement mechanisms—ligands undergoing redistribution around a boron center—initiated by an incoming nucleophile. On page 70 of this issue, Zhang
et al.
(
2
) report an alternative transmetallation process that harmoniously merges these usually independent mechanisms, and they demonstrate its application within a multicomponent catalytic reaction that generates specific chiral products.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aad8698</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: American Association for the Advancement of Science</publisher><subject>Aluminum ; Boron ; Catalysis ; Catalysts ; Chemical synthesis ; Ligands ; Nucleophiles ; Organic chemistry ; PERSPECTIVES ; Reagents ; Transition metals</subject><ispartof>Science (American Association for the Advancement of Science), 2016-01, Vol.351 (6268), p.26-27</ispartof><rights>Copyright © 2016 American Association for the Advancement of Science</rights><rights>Copyright © 2016, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c208t-8014c716ac2bd35229b97a74e2a4c86cb1334168dd3223cdaeefe4ed424401053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24741378$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24741378$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2884,2885,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Fyfe, James W. B.</creatorcontrib><creatorcontrib>Watson, Allan J. B.</creatorcontrib><title>When two reactions become one</title><title>Science (American Association for the Advancement of Science)</title><description>Merging two fundamental reactions of organoboron compounds provides a new platform for catalysis
[Also see Report by
Zhang
et al.
]
Organoboron compounds are among the most widely used reagents in organic synthesis and underpin many of the most frequently practiced and important reactions in synthetic organic chemistry (
1
). These reactions are based on specific mechanistic events that are distinctive to the reaction class. Catalytic processes are usually driven by transmetallation to transition metal complexes (passing a ligand from boron to the metal), whereas stoichiometric processes are based on metallate rearrangement mechanisms—ligands undergoing redistribution around a boron center—initiated by an incoming nucleophile. On page 70 of this issue, Zhang
et al.
(
2
) report an alternative transmetallation process that harmoniously merges these usually independent mechanisms, and they demonstrate its application within a multicomponent catalytic reaction that generates specific chiral products.</description><subject>Aluminum</subject><subject>Boron</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Ligands</subject><subject>Nucleophiles</subject><subject>Organic chemistry</subject><subject>PERSPECTIVES</subject><subject>Reagents</subject><subject>Transition metals</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkD1LA0EQhhdRMEZrq8CBjc0lM_t1e6UEvyBgo1gue3sTvJDcxt0L4r93JYeFzUwxz_syPIxdI8wRuV4k31Hvae5ca3RtTtgEoVZlzUGcsgmA0KWBSp2zi5Q2APlWiwmbvX9QXwxfoYjk_NCFPhUN-bCjIvR0yc7WbpvoatxT9vZw_7p8Klcvj8_Lu1XpOZgh96L0FWrnedMKxXnd1JWrJHEnvdG-QSEkatO2gnPhW0e0Jkmt5FICghJTdnvs3cfweaA02F2XPG23rqdwSBYNV0rlARm9-YduwiH2-TuLlRKglTSYqcWR8jGkFGlt97HbufhtEeyvLjvqsqOunJgdE5s0hPiHc1lJFJURP6twZtY</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Fyfe, James W. B.</creator><creator>Watson, Allan J. B.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20160101</creationdate><title>When two reactions become one</title><author>Fyfe, James W. B. ; Watson, Allan J. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-8014c716ac2bd35229b97a74e2a4c86cb1334168dd3223cdaeefe4ed424401053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminum</topic><topic>Boron</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Ligands</topic><topic>Nucleophiles</topic><topic>Organic chemistry</topic><topic>PERSPECTIVES</topic><topic>Reagents</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fyfe, James W. B.</creatorcontrib><creatorcontrib>Watson, Allan J. B.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fyfe, James W. B.</au><au>Watson, Allan J. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>When two reactions become one</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>351</volume><issue>6268</issue><spage>26</spage><epage>27</epage><pages>26-27</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Merging two fundamental reactions of organoboron compounds provides a new platform for catalysis
[Also see Report by
Zhang
et al.
]
Organoboron compounds are among the most widely used reagents in organic synthesis and underpin many of the most frequently practiced and important reactions in synthetic organic chemistry (
1
). These reactions are based on specific mechanistic events that are distinctive to the reaction class. Catalytic processes are usually driven by transmetallation to transition metal complexes (passing a ligand from boron to the metal), whereas stoichiometric processes are based on metallate rearrangement mechanisms—ligands undergoing redistribution around a boron center—initiated by an incoming nucleophile. On page 70 of this issue, Zhang
et al.
(
2
) report an alternative transmetallation process that harmoniously merges these usually independent mechanisms, and they demonstrate its application within a multicomponent catalytic reaction that generates specific chiral products.</abstract><cop>Washington</cop><pub>American Association for the Advancement of Science</pub><doi>10.1126/science.aad8698</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2016-01, Vol.351 (6268), p.26-27 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825558250 |
source | JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science |
subjects | Aluminum Boron Catalysis Catalysts Chemical synthesis Ligands Nucleophiles Organic chemistry PERSPECTIVES Reagents Transition metals |
title | When two reactions become one |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A15%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=When%20two%20reactions%20become%20one&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Fyfe,%20James%20W.%20B.&rft.date=2016-01-01&rft.volume=351&rft.issue=6268&rft.spage=26&rft.epage=27&rft.pages=26-27&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.aad8698&rft_dat=%3Cjstor_proqu%3E24741378%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753065481&rft_id=info:pmid/&rft_jstor_id=24741378&rfr_iscdi=true |