Chaotic dynamics of flexible beams driven by external white noise

Mathematical models of continuous structural members (beams, plates and shells) subjected to an external additive white noise are studied. The structural members are considered as systems with infinite number of degrees of freedom. We show that in mechanical structural systems external noise can not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing 2016-10, Vol.79, p.225-253
Hauptverfasser: Awrejcewicz, J., Krysko, A.V., Papkova, I.V., Zakharov, V.M., Erofeev, N.P., Krylova, E.Yu, Mrozowski, J., Krysko, V.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 253
container_issue
container_start_page 225
container_title Mechanical systems and signal processing
container_volume 79
creator Awrejcewicz, J.
Krysko, A.V.
Papkova, I.V.
Zakharov, V.M.
Erofeev, N.P.
Krylova, E.Yu
Mrozowski, J.
Krysko, V.A.
description Mathematical models of continuous structural members (beams, plates and shells) subjected to an external additive white noise are studied. The structural members are considered as systems with infinite number of degrees of freedom. We show that in mechanical structural systems external noise can not only lead to quantitative changes in the system dynamics (that is obvious), but also cause the qualitative, and sometimes surprising changes in the vibration regimes. Furthermore, we show that scenarios of the transition from regular to chaotic regimes quantified by Fast Fourier Transform (FFT) can lead to erroneous conclusions, and a support of the wavelet analysis is needed. We have detected and illustrated the modifications of classical three scenarios of transition from regular vibrations to deterministic chaos. The carried out numerical experiment shows that the white noise lowers the threshold for transition into spatio-temporal chaotic dynamics. A transition into chaos via the proposed modified scenarios developed in this work is sensitive to small noise and significantly reduces occurrence of periodic vibrations. Increase of noise intensity yields decrease of the duration of the laminar signal range, i.e., time between two successive turbulent bursts decreases. Scenario of transition into chaos of the studied mechanical structures essentially depends on the control parameters, and it can be different in different zones of the constructed charts (control parameter planes). Furthermore, we found an interesting phenomenon, when increase of the noise intensity yields surprisingly the vibrational characteristics with a lack of noisy effect (chaos is destroyed by noise and windows of periodicity appear). •Novel scenarios of transition from regular to chaotic dynamics are detected.•Combination of the classical scenarios are illustrated.•White noise may either destroy or amplify deterministic chaos.
doi_str_mv 10.1016/j.ymssp.2016.02.043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825557616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327016000947</els_id><sourcerecordid>1825557616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-9d9a710207d5b08e9b1bacded894c6bc912f3a4beabd9e52ae55a1bec70737083</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBWy8ZJMwthMnXrCoKl5SJTawtvyYqK7yKHZa2r8nUNasRiPdc0dzCLllkDNg8n6TH7uUtjmflhx4DoU4IzMGSmaMM3lOZlDXdSZ4BZfkKqUNAKgC5IwslmszjMFRf-xNF1yiQ0ObFg_Btkgtmi5RH8Mee2qPFA8jxt609GsdRqT9EBJek4vGtAlv_uacfDw9vi9fstXb8-tyscqcEHLMlFemYsCh8qWFGpVl1jiPvlaFk9Ypxhthiumi9QpLbrAsDbPoKqhEBbWYk7tT7zYOnztMo-5Ccti2psdhlzSreVmWlWRyiopT1MUhpYiN3sbQmXjUDPSPML3Rv8L0jzANXE_CJurhROH0xT5g1MkF7B36ENGN2g_hX_4bvZB2HQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825557616</pqid></control><display><type>article</type><title>Chaotic dynamics of flexible beams driven by external white noise</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Awrejcewicz, J. ; Krysko, A.V. ; Papkova, I.V. ; Zakharov, V.M. ; Erofeev, N.P. ; Krylova, E.Yu ; Mrozowski, J. ; Krysko, V.A.</creator><creatorcontrib>Awrejcewicz, J. ; Krysko, A.V. ; Papkova, I.V. ; Zakharov, V.M. ; Erofeev, N.P. ; Krylova, E.Yu ; Mrozowski, J. ; Krysko, V.A.</creatorcontrib><description>Mathematical models of continuous structural members (beams, plates and shells) subjected to an external additive white noise are studied. The structural members are considered as systems with infinite number of degrees of freedom. We show that in mechanical structural systems external noise can not only lead to quantitative changes in the system dynamics (that is obvious), but also cause the qualitative, and sometimes surprising changes in the vibration regimes. Furthermore, we show that scenarios of the transition from regular to chaotic regimes quantified by Fast Fourier Transform (FFT) can lead to erroneous conclusions, and a support of the wavelet analysis is needed. We have detected and illustrated the modifications of classical three scenarios of transition from regular vibrations to deterministic chaos. The carried out numerical experiment shows that the white noise lowers the threshold for transition into spatio-temporal chaotic dynamics. A transition into chaos via the proposed modified scenarios developed in this work is sensitive to small noise and significantly reduces occurrence of periodic vibrations. Increase of noise intensity yields decrease of the duration of the laminar signal range, i.e., time between two successive turbulent bursts decreases. Scenario of transition into chaos of the studied mechanical structures essentially depends on the control parameters, and it can be different in different zones of the constructed charts (control parameter planes). Furthermore, we found an interesting phenomenon, when increase of the noise intensity yields surprisingly the vibrational characteristics with a lack of noisy effect (chaos is destroyed by noise and windows of periodicity appear). •Novel scenarios of transition from regular to chaotic dynamics are detected.•Combination of the classical scenarios are illustrated.•White noise may either destroy or amplify deterministic chaos.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2016.02.043</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Beams ; Chaos theory ; Dynamical systems ; Dynamics ; Fourier and wavelet analysis ; Mathematical models ; Noise ; Noise-induced transitions ; Parametric vibrations ; Structural members ; Vibration ; White noise</subject><ispartof>Mechanical systems and signal processing, 2016-10, Vol.79, p.225-253</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-9d9a710207d5b08e9b1bacded894c6bc912f3a4beabd9e52ae55a1bec70737083</citedby><cites>FETCH-LOGICAL-c336t-9d9a710207d5b08e9b1bacded894c6bc912f3a4beabd9e52ae55a1bec70737083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymssp.2016.02.043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Awrejcewicz, J.</creatorcontrib><creatorcontrib>Krysko, A.V.</creatorcontrib><creatorcontrib>Papkova, I.V.</creatorcontrib><creatorcontrib>Zakharov, V.M.</creatorcontrib><creatorcontrib>Erofeev, N.P.</creatorcontrib><creatorcontrib>Krylova, E.Yu</creatorcontrib><creatorcontrib>Mrozowski, J.</creatorcontrib><creatorcontrib>Krysko, V.A.</creatorcontrib><title>Chaotic dynamics of flexible beams driven by external white noise</title><title>Mechanical systems and signal processing</title><description>Mathematical models of continuous structural members (beams, plates and shells) subjected to an external additive white noise are studied. The structural members are considered as systems with infinite number of degrees of freedom. We show that in mechanical structural systems external noise can not only lead to quantitative changes in the system dynamics (that is obvious), but also cause the qualitative, and sometimes surprising changes in the vibration regimes. Furthermore, we show that scenarios of the transition from regular to chaotic regimes quantified by Fast Fourier Transform (FFT) can lead to erroneous conclusions, and a support of the wavelet analysis is needed. We have detected and illustrated the modifications of classical three scenarios of transition from regular vibrations to deterministic chaos. The carried out numerical experiment shows that the white noise lowers the threshold for transition into spatio-temporal chaotic dynamics. A transition into chaos via the proposed modified scenarios developed in this work is sensitive to small noise and significantly reduces occurrence of periodic vibrations. Increase of noise intensity yields decrease of the duration of the laminar signal range, i.e., time between two successive turbulent bursts decreases. Scenario of transition into chaos of the studied mechanical structures essentially depends on the control parameters, and it can be different in different zones of the constructed charts (control parameter planes). Furthermore, we found an interesting phenomenon, when increase of the noise intensity yields surprisingly the vibrational characteristics with a lack of noisy effect (chaos is destroyed by noise and windows of periodicity appear). •Novel scenarios of transition from regular to chaotic dynamics are detected.•Combination of the classical scenarios are illustrated.•White noise may either destroy or amplify deterministic chaos.</description><subject>Beams</subject><subject>Chaos theory</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Fourier and wavelet analysis</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Noise-induced transitions</subject><subject>Parametric vibrations</subject><subject>Structural members</subject><subject>Vibration</subject><subject>White noise</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBWy8ZJMwthMnXrCoKl5SJTawtvyYqK7yKHZa2r8nUNasRiPdc0dzCLllkDNg8n6TH7uUtjmflhx4DoU4IzMGSmaMM3lOZlDXdSZ4BZfkKqUNAKgC5IwslmszjMFRf-xNF1yiQ0ObFg_Btkgtmi5RH8Mee2qPFA8jxt609GsdRqT9EBJek4vGtAlv_uacfDw9vi9fstXb8-tyscqcEHLMlFemYsCh8qWFGpVl1jiPvlaFk9Ypxhthiumi9QpLbrAsDbPoKqhEBbWYk7tT7zYOnztMo-5Ccti2psdhlzSreVmWlWRyiopT1MUhpYiN3sbQmXjUDPSPML3Rv8L0jzANXE_CJurhROH0xT5g1MkF7B36ENGN2g_hX_4bvZB2HQ</recordid><startdate>20161015</startdate><enddate>20161015</enddate><creator>Awrejcewicz, J.</creator><creator>Krysko, A.V.</creator><creator>Papkova, I.V.</creator><creator>Zakharov, V.M.</creator><creator>Erofeev, N.P.</creator><creator>Krylova, E.Yu</creator><creator>Mrozowski, J.</creator><creator>Krysko, V.A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161015</creationdate><title>Chaotic dynamics of flexible beams driven by external white noise</title><author>Awrejcewicz, J. ; Krysko, A.V. ; Papkova, I.V. ; Zakharov, V.M. ; Erofeev, N.P. ; Krylova, E.Yu ; Mrozowski, J. ; Krysko, V.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-9d9a710207d5b08e9b1bacded894c6bc912f3a4beabd9e52ae55a1bec70737083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Beams</topic><topic>Chaos theory</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Fourier and wavelet analysis</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Noise-induced transitions</topic><topic>Parametric vibrations</topic><topic>Structural members</topic><topic>Vibration</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Awrejcewicz, J.</creatorcontrib><creatorcontrib>Krysko, A.V.</creatorcontrib><creatorcontrib>Papkova, I.V.</creatorcontrib><creatorcontrib>Zakharov, V.M.</creatorcontrib><creatorcontrib>Erofeev, N.P.</creatorcontrib><creatorcontrib>Krylova, E.Yu</creatorcontrib><creatorcontrib>Mrozowski, J.</creatorcontrib><creatorcontrib>Krysko, V.A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awrejcewicz, J.</au><au>Krysko, A.V.</au><au>Papkova, I.V.</au><au>Zakharov, V.M.</au><au>Erofeev, N.P.</au><au>Krylova, E.Yu</au><au>Mrozowski, J.</au><au>Krysko, V.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaotic dynamics of flexible beams driven by external white noise</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2016-10-15</date><risdate>2016</risdate><volume>79</volume><spage>225</spage><epage>253</epage><pages>225-253</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>Mathematical models of continuous structural members (beams, plates and shells) subjected to an external additive white noise are studied. The structural members are considered as systems with infinite number of degrees of freedom. We show that in mechanical structural systems external noise can not only lead to quantitative changes in the system dynamics (that is obvious), but also cause the qualitative, and sometimes surprising changes in the vibration regimes. Furthermore, we show that scenarios of the transition from regular to chaotic regimes quantified by Fast Fourier Transform (FFT) can lead to erroneous conclusions, and a support of the wavelet analysis is needed. We have detected and illustrated the modifications of classical three scenarios of transition from regular vibrations to deterministic chaos. The carried out numerical experiment shows that the white noise lowers the threshold for transition into spatio-temporal chaotic dynamics. A transition into chaos via the proposed modified scenarios developed in this work is sensitive to small noise and significantly reduces occurrence of periodic vibrations. Increase of noise intensity yields decrease of the duration of the laminar signal range, i.e., time between two successive turbulent bursts decreases. Scenario of transition into chaos of the studied mechanical structures essentially depends on the control parameters, and it can be different in different zones of the constructed charts (control parameter planes). Furthermore, we found an interesting phenomenon, when increase of the noise intensity yields surprisingly the vibrational characteristics with a lack of noisy effect (chaos is destroyed by noise and windows of periodicity appear). •Novel scenarios of transition from regular to chaotic dynamics are detected.•Combination of the classical scenarios are illustrated.•White noise may either destroy or amplify deterministic chaos.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2016.02.043</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2016-10, Vol.79, p.225-253
issn 0888-3270
1096-1216
language eng
recordid cdi_proquest_miscellaneous_1825557616
source Elsevier ScienceDirect Journals Complete
subjects Beams
Chaos theory
Dynamical systems
Dynamics
Fourier and wavelet analysis
Mathematical models
Noise
Noise-induced transitions
Parametric vibrations
Structural members
Vibration
White noise
title Chaotic dynamics of flexible beams driven by external white noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaotic%20dynamics%20of%20flexible%20beams%20driven%20by%20external%20white%20noise&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Awrejcewicz,%20J.&rft.date=2016-10-15&rft.volume=79&rft.spage=225&rft.epage=253&rft.pages=225-253&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2016.02.043&rft_dat=%3Cproquest_cross%3E1825557616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825557616&rft_id=info:pmid/&rft_els_id=S0888327016000947&rfr_iscdi=true