Flutter suppression of plates using passive constrained viscoelastic layers

Flutter in aeronautical panels is a self-excited aeroelastic phenomenon which occurs during supersonic flights due to dynamic instability of inertia, elastic and aerodynamic forces of the system. In the flutter condition, when the critical aerodynamic pressure is reached, the vibration amplitudes of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing 2016-10, Vol.79, p.99-111
Hauptverfasser: Cunha-Filho, A.G., de Lima, A.M.G., Donadon, M.V., Leão, L.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111
container_issue
container_start_page 99
container_title Mechanical systems and signal processing
container_volume 79
creator Cunha-Filho, A.G.
de Lima, A.M.G.
Donadon, M.V.
Leão, L.S.
description Flutter in aeronautical panels is a self-excited aeroelastic phenomenon which occurs during supersonic flights due to dynamic instability of inertia, elastic and aerodynamic forces of the system. In the flutter condition, when the critical aerodynamic pressure is reached, the vibration amplitudes of the panel become dynamically unstable and increase exponentially with time, significantly affecting the fatigue life of the existing aeronautical components. Thus, in this paper, the interest is to investigate the possibility reducing the effects of the supersonic aeroelastic instability of rectangular plates by applying passive constrained viscoelastic layers. The rationale for such study is the fact that as the addition of viscoelastic materials provides decreased vibration amplitudes it becomes important to quantify the suppression of plate flutter coalescence modes that can be obtained. Moreover, despite the fact that much research on the suppression of panel flutter has been carried out by using passive, semi-active and active control techniques, few works have been proposed to deal with the problem of predicting the flutter boundary of aeroviscoelastic systems, since they must conveniently account for the frequency- and temperature-dependent behavior of the viscoelastic material. After the presentation of the theoretical foundations of the methodology, the description of a numerical study on the flutter analysis of a three-layer sandwich plate is addressed. •FE modeling of flat sandwich panels subjected do supersonic flow.•Flutter boundary of aeroviscoelastic systems by using an iterative scheme.•Parametric study of the influence of the temperature and layers’ thicknesses of the viscoelastic treatment on the flutter boundary.•The use of viscoelastic materials to improve the stability of aeroelastic systems.
doi_str_mv 10.1016/j.ymssp.2016.02.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825557387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327016000765</els_id><sourcerecordid>1825557387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-4f120986d4c6c062a6a1beff6335697c71672bd306bf680a765afa65ecd2b123</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKufwEuOXnbNnya7PXiQYlUseOk9ZLMTSdnurplsod_e1HoWHgwzvDfM_Ai556zkjOvHXXncI46lyE3JRJa6IDPOlrrggutLMmN1XRdSVOya3CDuGGPLBdMz8rHuppQgUpzGMQJiGHo6eDp2NgHSCUP_RUeb5wegbugxRRt6aOkhoBugs5iCo509QsRbcuVth3D3V-dku37Zrt6Kzefr--p5UzgpdSoWngu2rHW7cNoxLay2vAHvtZRKLytXcV2JppVMN17XzFZaWW-1AteKhgs5Jw_ntWMcvifAZPb5Fug628MwoeG1UEpVsq6yVZ6tLg6IEbwZY9jbeDScmRM5szO_5MyJnGEiS-XU0zkF-YlDgGjQBegdtCGCS6Ydwr_5H3YMed4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825557387</pqid></control><display><type>article</type><title>Flutter suppression of plates using passive constrained viscoelastic layers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cunha-Filho, A.G. ; de Lima, A.M.G. ; Donadon, M.V. ; Leão, L.S.</creator><creatorcontrib>Cunha-Filho, A.G. ; de Lima, A.M.G. ; Donadon, M.V. ; Leão, L.S.</creatorcontrib><description>Flutter in aeronautical panels is a self-excited aeroelastic phenomenon which occurs during supersonic flights due to dynamic instability of inertia, elastic and aerodynamic forces of the system. In the flutter condition, when the critical aerodynamic pressure is reached, the vibration amplitudes of the panel become dynamically unstable and increase exponentially with time, significantly affecting the fatigue life of the existing aeronautical components. Thus, in this paper, the interest is to investigate the possibility reducing the effects of the supersonic aeroelastic instability of rectangular plates by applying passive constrained viscoelastic layers. The rationale for such study is the fact that as the addition of viscoelastic materials provides decreased vibration amplitudes it becomes important to quantify the suppression of plate flutter coalescence modes that can be obtained. Moreover, despite the fact that much research on the suppression of panel flutter has been carried out by using passive, semi-active and active control techniques, few works have been proposed to deal with the problem of predicting the flutter boundary of aeroviscoelastic systems, since they must conveniently account for the frequency- and temperature-dependent behavior of the viscoelastic material. After the presentation of the theoretical foundations of the methodology, the description of a numerical study on the flutter analysis of a three-layer sandwich plate is addressed. •FE modeling of flat sandwich panels subjected do supersonic flow.•Flutter boundary of aeroviscoelastic systems by using an iterative scheme.•Parametric study of the influence of the temperature and layers’ thicknesses of the viscoelastic treatment on the flutter boundary.•The use of viscoelastic materials to improve the stability of aeroelastic systems.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2016.02.025</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Aeroelasticity ; Constraints ; Dynamical systems ; Finite element ; Flutter ; Flutter suppression ; Instability ; Panels ; PASSIVE control ; Plates ; Vibration ; Viscoelastic materials</subject><ispartof>Mechanical systems and signal processing, 2016-10, Vol.79, p.99-111</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-4f120986d4c6c062a6a1beff6335697c71672bd306bf680a765afa65ecd2b123</citedby><cites>FETCH-LOGICAL-c336t-4f120986d4c6c062a6a1beff6335697c71672bd306bf680a765afa65ecd2b123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymssp.2016.02.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Cunha-Filho, A.G.</creatorcontrib><creatorcontrib>de Lima, A.M.G.</creatorcontrib><creatorcontrib>Donadon, M.V.</creatorcontrib><creatorcontrib>Leão, L.S.</creatorcontrib><title>Flutter suppression of plates using passive constrained viscoelastic layers</title><title>Mechanical systems and signal processing</title><description>Flutter in aeronautical panels is a self-excited aeroelastic phenomenon which occurs during supersonic flights due to dynamic instability of inertia, elastic and aerodynamic forces of the system. In the flutter condition, when the critical aerodynamic pressure is reached, the vibration amplitudes of the panel become dynamically unstable and increase exponentially with time, significantly affecting the fatigue life of the existing aeronautical components. Thus, in this paper, the interest is to investigate the possibility reducing the effects of the supersonic aeroelastic instability of rectangular plates by applying passive constrained viscoelastic layers. The rationale for such study is the fact that as the addition of viscoelastic materials provides decreased vibration amplitudes it becomes important to quantify the suppression of plate flutter coalescence modes that can be obtained. Moreover, despite the fact that much research on the suppression of panel flutter has been carried out by using passive, semi-active and active control techniques, few works have been proposed to deal with the problem of predicting the flutter boundary of aeroviscoelastic systems, since they must conveniently account for the frequency- and temperature-dependent behavior of the viscoelastic material. After the presentation of the theoretical foundations of the methodology, the description of a numerical study on the flutter analysis of a three-layer sandwich plate is addressed. •FE modeling of flat sandwich panels subjected do supersonic flow.•Flutter boundary of aeroviscoelastic systems by using an iterative scheme.•Parametric study of the influence of the temperature and layers’ thicknesses of the viscoelastic treatment on the flutter boundary.•The use of viscoelastic materials to improve the stability of aeroelastic systems.</description><subject>Aeroelasticity</subject><subject>Constraints</subject><subject>Dynamical systems</subject><subject>Finite element</subject><subject>Flutter</subject><subject>Flutter suppression</subject><subject>Instability</subject><subject>Panels</subject><subject>PASSIVE control</subject><subject>Plates</subject><subject>Vibration</subject><subject>Viscoelastic materials</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKufwEuOXnbNnya7PXiQYlUseOk9ZLMTSdnurplsod_e1HoWHgwzvDfM_Ai556zkjOvHXXncI46lyE3JRJa6IDPOlrrggutLMmN1XRdSVOya3CDuGGPLBdMz8rHuppQgUpzGMQJiGHo6eDp2NgHSCUP_RUeb5wegbugxRRt6aOkhoBugs5iCo509QsRbcuVth3D3V-dku37Zrt6Kzefr--p5UzgpdSoWngu2rHW7cNoxLay2vAHvtZRKLytXcV2JppVMN17XzFZaWW-1AteKhgs5Jw_ntWMcvifAZPb5Fug628MwoeG1UEpVsq6yVZ6tLg6IEbwZY9jbeDScmRM5szO_5MyJnGEiS-XU0zkF-YlDgGjQBegdtCGCS6Ydwr_5H3YMed4</recordid><startdate>20161015</startdate><enddate>20161015</enddate><creator>Cunha-Filho, A.G.</creator><creator>de Lima, A.M.G.</creator><creator>Donadon, M.V.</creator><creator>Leão, L.S.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161015</creationdate><title>Flutter suppression of plates using passive constrained viscoelastic layers</title><author>Cunha-Filho, A.G. ; de Lima, A.M.G. ; Donadon, M.V. ; Leão, L.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-4f120986d4c6c062a6a1beff6335697c71672bd306bf680a765afa65ecd2b123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aeroelasticity</topic><topic>Constraints</topic><topic>Dynamical systems</topic><topic>Finite element</topic><topic>Flutter</topic><topic>Flutter suppression</topic><topic>Instability</topic><topic>Panels</topic><topic>PASSIVE control</topic><topic>Plates</topic><topic>Vibration</topic><topic>Viscoelastic materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cunha-Filho, A.G.</creatorcontrib><creatorcontrib>de Lima, A.M.G.</creatorcontrib><creatorcontrib>Donadon, M.V.</creatorcontrib><creatorcontrib>Leão, L.S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cunha-Filho, A.G.</au><au>de Lima, A.M.G.</au><au>Donadon, M.V.</au><au>Leão, L.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flutter suppression of plates using passive constrained viscoelastic layers</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2016-10-15</date><risdate>2016</risdate><volume>79</volume><spage>99</spage><epage>111</epage><pages>99-111</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>Flutter in aeronautical panels is a self-excited aeroelastic phenomenon which occurs during supersonic flights due to dynamic instability of inertia, elastic and aerodynamic forces of the system. In the flutter condition, when the critical aerodynamic pressure is reached, the vibration amplitudes of the panel become dynamically unstable and increase exponentially with time, significantly affecting the fatigue life of the existing aeronautical components. Thus, in this paper, the interest is to investigate the possibility reducing the effects of the supersonic aeroelastic instability of rectangular plates by applying passive constrained viscoelastic layers. The rationale for such study is the fact that as the addition of viscoelastic materials provides decreased vibration amplitudes it becomes important to quantify the suppression of plate flutter coalescence modes that can be obtained. Moreover, despite the fact that much research on the suppression of panel flutter has been carried out by using passive, semi-active and active control techniques, few works have been proposed to deal with the problem of predicting the flutter boundary of aeroviscoelastic systems, since they must conveniently account for the frequency- and temperature-dependent behavior of the viscoelastic material. After the presentation of the theoretical foundations of the methodology, the description of a numerical study on the flutter analysis of a three-layer sandwich plate is addressed. •FE modeling of flat sandwich panels subjected do supersonic flow.•Flutter boundary of aeroviscoelastic systems by using an iterative scheme.•Parametric study of the influence of the temperature and layers’ thicknesses of the viscoelastic treatment on the flutter boundary.•The use of viscoelastic materials to improve the stability of aeroelastic systems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2016.02.025</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2016-10, Vol.79, p.99-111
issn 0888-3270
1096-1216
language eng
recordid cdi_proquest_miscellaneous_1825557387
source Access via ScienceDirect (Elsevier)
subjects Aeroelasticity
Constraints
Dynamical systems
Finite element
Flutter
Flutter suppression
Instability
Panels
PASSIVE control
Plates
Vibration
Viscoelastic materials
title Flutter suppression of plates using passive constrained viscoelastic layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A35%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flutter%20suppression%20of%20plates%20using%20passive%20constrained%20viscoelastic%20layers&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Cunha-Filho,%20A.G.&rft.date=2016-10-15&rft.volume=79&rft.spage=99&rft.epage=111&rft.pages=99-111&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2016.02.025&rft_dat=%3Cproquest_cross%3E1825557387%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825557387&rft_id=info:pmid/&rft_els_id=S0888327016000765&rfr_iscdi=true