Tillage, crop rotation, and organic amendment effect on changes in soil organic matter

The models CQESTR and RUSLE were used to estimate carbon sequestration in agricultural soils. Carbon sequestration in agricultural soils is controlled by the balance of added organic residues and microbial oxidation of both residues and native organic matter (OM) as moderated by management and tilla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2002-01, Vol.116 (3), p.405-411
Hauptverfasser: Rickman, R, Douglas, C, Albrecht, S, Berc, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 411
container_issue 3
container_start_page 405
container_title Environmental pollution (1987)
container_volume 116
creator Rickman, R
Douglas, C
Albrecht, S
Berc, J
description The models CQESTR and RUSLE were used to estimate carbon sequestration in agricultural soils. Carbon sequestration in agricultural soils is controlled by the balance of added organic residues and microbial oxidation of both residues and native organic matter (OM) as moderated by management and tillage. The PC-based model CQESTR predicts decomposition of residues, organic amendments and soil OM, based on cropping practices. CQESTR uses RUSLE (Revised Universal Soil Loss Equation) crop rotation and management practice, crop production, and operation databases. These data are supplemented with residue nitrogen and soil OM, bulk density, and layer thickness. CQESTR was calibrated with soil carbon data from 70-year-long experiments at the Research Center at Pendleton, OR. The calibrated model provides estimates with a 95% confidence interval of 0.33% OM. Validation at 11 independent sites resulted in a matching of observed with calculated OM with a 95% confidence interval of 0.55% OM. A 12th site, with a history of severe erosion, provided a poor match.
doi_str_mv 10.1016/S0269-7491(01)00217-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18255558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0269749101002172</els_id><sourcerecordid>18255558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-185af4b23cd0fd75ccd23cb726980d057d4c740645e910744d38fc698c5989653</originalsourceid><addsrcrecordid>eNqFkFFrFDEQgIMo9qz-BCUvikJXZ3aTzeapSNG2UPDB6mvIJbNnZDc5kz2h_96cd7SPDQkTyDeTmY-x1wgfEbD_9B3aXjdKaHwP-AGgRdW0T9gKB9U1vWjFU7a6R07Yi1J-A4Douu45O0Ec2lahXrGft2Ga7IbOuMtpy3Na7BJSPOM2ep7yxsbguJ0p-noWTuNIbuEpcvfLxg0VHiIvKUz37GyXhfJL9my0U6FXx3jKfnz9cntx1dx8u7y--HzTOIl6aXCQdhTrtnMeRq-kc77e16r2PYAHqbxwSkAvJGkEJYTvhtHVRyf1oHvZnbJ3h7rbnP7sqCxmDsVRHSlS2hVT55R1DY-DogfUqCsoD2D1UUqm0WxzmG2-Mwhmb978N2_2Wg3UvTdv2pr35vjBbj2Tf8g6qq7A2yNgi7PTmG10oTxwncCh7_eFzg8cVW9_A2VTXKDoyIdc3RufwiOt_APuZ55q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14601919</pqid></control><display><type>article</type><title>Tillage, crop rotation, and organic amendment effect on changes in soil organic matter</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Rickman, R ; Douglas, C ; Albrecht, S ; Berc, J</creator><creatorcontrib>Rickman, R ; Douglas, C ; Albrecht, S ; Berc, J</creatorcontrib><description>The models CQESTR and RUSLE were used to estimate carbon sequestration in agricultural soils. Carbon sequestration in agricultural soils is controlled by the balance of added organic residues and microbial oxidation of both residues and native organic matter (OM) as moderated by management and tillage. The PC-based model CQESTR predicts decomposition of residues, organic amendments and soil OM, based on cropping practices. CQESTR uses RUSLE (Revised Universal Soil Loss Equation) crop rotation and management practice, crop production, and operation databases. These data are supplemented with residue nitrogen and soil OM, bulk density, and layer thickness. CQESTR was calibrated with soil carbon data from 70-year-long experiments at the Research Center at Pendleton, OR. The calibrated model provides estimates with a 95% confidence interval of 0.33% OM. Validation at 11 independent sites resulted in a matching of observed with calculated OM with a 95% confidence interval of 0.55% OM. A 12th site, with a history of severe erosion, provided a poor match.</description><identifier>ISSN: 0269-7491</identifier><identifier>EISSN: 1873-6424</identifier><identifier>DOI: 10.1016/S0269-7491(01)00217-2</identifier><identifier>PMID: 11822719</identifier><identifier>CODEN: ENVPAF</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Agricultural soils ; Agriculture ; Agronomy. Soil science and plant productions ; Biological and medical sciences ; Calibration ; Carbon - analysis ; Carbon - metabolism ; Carbon - pharmacokinetics ; Carbon sequestration ; Chemical, physicochemical, biochemical and biological properties ; Crop rotation ; Environmental Monitoring ; Fertilizers ; Fundamental and applied biological sciences. Psychology ; Organic Chemicals - analysis ; Organic matter ; Oxidation-Reduction ; Physics, chemistry, biochemistry and biology of agricultural and forest soils ; Plants ; Soil ; Soil Microbiology ; Soil science ; Tillage</subject><ispartof>Environmental pollution (1987), 2002-01, Vol.116 (3), p.405-411</ispartof><rights>2001</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-185af4b23cd0fd75ccd23cb726980d057d4c740645e910744d38fc698c5989653</citedby><cites>FETCH-LOGICAL-c519t-185af4b23cd0fd75ccd23cb726980d057d4c740645e910744d38fc698c5989653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0269749101002172$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13418662$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11822719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rickman, R</creatorcontrib><creatorcontrib>Douglas, C</creatorcontrib><creatorcontrib>Albrecht, S</creatorcontrib><creatorcontrib>Berc, J</creatorcontrib><title>Tillage, crop rotation, and organic amendment effect on changes in soil organic matter</title><title>Environmental pollution (1987)</title><addtitle>Environ Pollut</addtitle><description>The models CQESTR and RUSLE were used to estimate carbon sequestration in agricultural soils. Carbon sequestration in agricultural soils is controlled by the balance of added organic residues and microbial oxidation of both residues and native organic matter (OM) as moderated by management and tillage. The PC-based model CQESTR predicts decomposition of residues, organic amendments and soil OM, based on cropping practices. CQESTR uses RUSLE (Revised Universal Soil Loss Equation) crop rotation and management practice, crop production, and operation databases. These data are supplemented with residue nitrogen and soil OM, bulk density, and layer thickness. CQESTR was calibrated with soil carbon data from 70-year-long experiments at the Research Center at Pendleton, OR. The calibrated model provides estimates with a 95% confidence interval of 0.33% OM. Validation at 11 independent sites resulted in a matching of observed with calculated OM with a 95% confidence interval of 0.55% OM. A 12th site, with a history of severe erosion, provided a poor match.</description><subject>Agricultural soils</subject><subject>Agriculture</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Biological and medical sciences</subject><subject>Calibration</subject><subject>Carbon - analysis</subject><subject>Carbon - metabolism</subject><subject>Carbon - pharmacokinetics</subject><subject>Carbon sequestration</subject><subject>Chemical, physicochemical, biochemical and biological properties</subject><subject>Crop rotation</subject><subject>Environmental Monitoring</subject><subject>Fertilizers</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Organic Chemicals - analysis</subject><subject>Organic matter</subject><subject>Oxidation-Reduction</subject><subject>Physics, chemistry, biochemistry and biology of agricultural and forest soils</subject><subject>Plants</subject><subject>Soil</subject><subject>Soil Microbiology</subject><subject>Soil science</subject><subject>Tillage</subject><issn>0269-7491</issn><issn>1873-6424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkFFrFDEQgIMo9qz-BCUvikJXZ3aTzeapSNG2UPDB6mvIJbNnZDc5kz2h_96cd7SPDQkTyDeTmY-x1wgfEbD_9B3aXjdKaHwP-AGgRdW0T9gKB9U1vWjFU7a6R07Yi1J-A4Douu45O0Ec2lahXrGft2Ga7IbOuMtpy3Na7BJSPOM2ep7yxsbguJ0p-noWTuNIbuEpcvfLxg0VHiIvKUz37GyXhfJL9my0U6FXx3jKfnz9cntx1dx8u7y--HzTOIl6aXCQdhTrtnMeRq-kc77e16r2PYAHqbxwSkAvJGkEJYTvhtHVRyf1oHvZnbJ3h7rbnP7sqCxmDsVRHSlS2hVT55R1DY-DogfUqCsoD2D1UUqm0WxzmG2-Mwhmb978N2_2Wg3UvTdv2pr35vjBbj2Tf8g6qq7A2yNgi7PTmG10oTxwncCh7_eFzg8cVW9_A2VTXKDoyIdc3RufwiOt_APuZ55q</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Rickman, R</creator><creator>Douglas, C</creator><creator>Albrecht, S</creator><creator>Berc, J</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SN</scope><scope>7TV</scope></search><sort><creationdate>20020101</creationdate><title>Tillage, crop rotation, and organic amendment effect on changes in soil organic matter</title><author>Rickman, R ; Douglas, C ; Albrecht, S ; Berc, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-185af4b23cd0fd75ccd23cb726980d057d4c740645e910744d38fc698c5989653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Agricultural soils</topic><topic>Agriculture</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Biological and medical sciences</topic><topic>Calibration</topic><topic>Carbon - analysis</topic><topic>Carbon - metabolism</topic><topic>Carbon - pharmacokinetics</topic><topic>Carbon sequestration</topic><topic>Chemical, physicochemical, biochemical and biological properties</topic><topic>Crop rotation</topic><topic>Environmental Monitoring</topic><topic>Fertilizers</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Organic Chemicals - analysis</topic><topic>Organic matter</topic><topic>Oxidation-Reduction</topic><topic>Physics, chemistry, biochemistry and biology of agricultural and forest soils</topic><topic>Plants</topic><topic>Soil</topic><topic>Soil Microbiology</topic><topic>Soil science</topic><topic>Tillage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rickman, R</creatorcontrib><creatorcontrib>Douglas, C</creatorcontrib><creatorcontrib>Albrecht, S</creatorcontrib><creatorcontrib>Berc, J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Ecology Abstracts</collection><collection>Pollution Abstracts</collection><jtitle>Environmental pollution (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rickman, R</au><au>Douglas, C</au><au>Albrecht, S</au><au>Berc, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tillage, crop rotation, and organic amendment effect on changes in soil organic matter</atitle><jtitle>Environmental pollution (1987)</jtitle><addtitle>Environ Pollut</addtitle><date>2002-01-01</date><risdate>2002</risdate><volume>116</volume><issue>3</issue><spage>405</spage><epage>411</epage><pages>405-411</pages><issn>0269-7491</issn><eissn>1873-6424</eissn><coden>ENVPAF</coden><abstract>The models CQESTR and RUSLE were used to estimate carbon sequestration in agricultural soils. Carbon sequestration in agricultural soils is controlled by the balance of added organic residues and microbial oxidation of both residues and native organic matter (OM) as moderated by management and tillage. The PC-based model CQESTR predicts decomposition of residues, organic amendments and soil OM, based on cropping practices. CQESTR uses RUSLE (Revised Universal Soil Loss Equation) crop rotation and management practice, crop production, and operation databases. These data are supplemented with residue nitrogen and soil OM, bulk density, and layer thickness. CQESTR was calibrated with soil carbon data from 70-year-long experiments at the Research Center at Pendleton, OR. The calibrated model provides estimates with a 95% confidence interval of 0.33% OM. Validation at 11 independent sites resulted in a matching of observed with calculated OM with a 95% confidence interval of 0.55% OM. A 12th site, with a history of severe erosion, provided a poor match.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>11822719</pmid><doi>10.1016/S0269-7491(01)00217-2</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0269-7491
ispartof Environmental pollution (1987), 2002-01, Vol.116 (3), p.405-411
issn 0269-7491
1873-6424
language eng
recordid cdi_proquest_miscellaneous_18255558
source MEDLINE; Elsevier ScienceDirect Journals
subjects Agricultural soils
Agriculture
Agronomy. Soil science and plant productions
Biological and medical sciences
Calibration
Carbon - analysis
Carbon - metabolism
Carbon - pharmacokinetics
Carbon sequestration
Chemical, physicochemical, biochemical and biological properties
Crop rotation
Environmental Monitoring
Fertilizers
Fundamental and applied biological sciences. Psychology
Organic Chemicals - analysis
Organic matter
Oxidation-Reduction
Physics, chemistry, biochemistry and biology of agricultural and forest soils
Plants
Soil
Soil Microbiology
Soil science
Tillage
title Tillage, crop rotation, and organic amendment effect on changes in soil organic matter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tillage,%20crop%20rotation,%20and%20organic%20amendment%20effect%20on%20changes%20in%20soil%20organic%20matter&rft.jtitle=Environmental%20pollution%20(1987)&rft.au=Rickman,%20R&rft.date=2002-01-01&rft.volume=116&rft.issue=3&rft.spage=405&rft.epage=411&rft.pages=405-411&rft.issn=0269-7491&rft.eissn=1873-6424&rft.coden=ENVPAF&rft_id=info:doi/10.1016/S0269-7491(01)00217-2&rft_dat=%3Cproquest_cross%3E18255558%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14601919&rft_id=info:pmid/11822719&rft_els_id=S0269749101002172&rfr_iscdi=true