On the Formation Mechanisms of Artificially Generated High Reynolds Number Turbulent Boundary Layers

We investigate the evolution of an artificially thick turbulent boundary layer generated by two families of small obstacles (divided into uniform and non-uniform wall normal distributions of blockage). One- and two-point velocity measurements using constant temperature anemometry show that the canon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary-layer meteorology 2016-08, Vol.160 (2), p.201-224
Hauptverfasser: Rodríguez-López, Eduardo, Bruce, Paul J. K., Buxton, Oliver R. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224
container_issue 2
container_start_page 201
container_title Boundary-layer meteorology
container_volume 160
creator Rodríguez-López, Eduardo
Bruce, Paul J. K.
Buxton, Oliver R. H.
description We investigate the evolution of an artificially thick turbulent boundary layer generated by two families of small obstacles (divided into uniform and non-uniform wall normal distributions of blockage). One- and two-point velocity measurements using constant temperature anemometry show that the canonical behaviour of a boundary layer is recovered after an adaptation region downstream of the trips presenting 150 % higher momentum thickness (or equivalently, Reynolds number) than the natural case for the same downstream distance ( x ≈ 3 m). The effect of the degree of immersion of the trips for h / δ ≳ 1 is shown to play a secondary role. The one-point diagnostic quantities used to assess the degree of recovery of the canonical properties are the friction coefficient (representative of the inner motions), the shape factor and wake parameter (representative of the wake regions); they provide a severe test to be applied to artificially generated boundary layers. Simultaneous two-point velocity measurements of both spanwise and wall-normal correlations and the modulation of inner velocity by the outer structures show that there are two different formation mechanisms for the boundary layer. The trips with high aspect ratio and uniform distributed blockage leave the inner motions of the boundary layer relatively undisturbed, which subsequently drive the mixing of the obstacles’ wake with the wall-bounded flow (wall-driven). In contrast, the low aspect-ratio trips with non-uniform blockage destroy the inner structures, which are then re-formed further downstream under the influence of the wake of the trips (wake-driven).
doi_str_mv 10.1007/s10546-016-0139-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825555714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470525839</galeid><sourcerecordid>A470525839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-31c79b73ee6356612413e572f457bb19568a5bd253584436b87994acfa290cd3</originalsourceid><addsrcrecordid>eNqNkU9rHCEYh6W00G3aD9Cb0Esvk_hf57gNTVLYNlD2Lo7zzq5hRlOdOey3r8P0UAqFKPKiPM-L-kPoIyXXlBB9UyiRQjWErou3jXmFdlRq3lCh2Wu0I4SoxnAq3qJ3pTzVraaS7FD_GPF8BnyX8uTmkCL-Dv7sYihTwWnA-zyHIfjgxvGC7yFCdjP0-CGczvgnXGIa-4J_LFMHGR-X3C0jxBl_SUvsXb7gg7tALu_Rm8GNBT78qVfoePf1ePvQHB7vv93uD40XSswNp163neYAikulKBOUg9RsEFJ3HW2lMk52PZNcGiG46oxuW-H84FhLfM-v0Oet7XNOvxYos51C8TCOLkJaiqWGyTo0FS9AiVGMtq2q6Kd_0Ke05FjfsVKccEn42vB6o05uBBvikObsfJ09TMGnCEOo53uhiWTS8LYKdBN8TqVkGOxzDlP9M0uJXSO1W6S2RmrXSK2pDtucUtl4gvzXVf4r_QaSmaGK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1803035034</pqid></control><display><type>article</type><title>On the Formation Mechanisms of Artificially Generated High Reynolds Number Turbulent Boundary Layers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rodríguez-López, Eduardo ; Bruce, Paul J. K. ; Buxton, Oliver R. H.</creator><creatorcontrib>Rodríguez-López, Eduardo ; Bruce, Paul J. K. ; Buxton, Oliver R. H.</creatorcontrib><description>We investigate the evolution of an artificially thick turbulent boundary layer generated by two families of small obstacles (divided into uniform and non-uniform wall normal distributions of blockage). One- and two-point velocity measurements using constant temperature anemometry show that the canonical behaviour of a boundary layer is recovered after an adaptation region downstream of the trips presenting 150 % higher momentum thickness (or equivalently, Reynolds number) than the natural case for the same downstream distance ( x ≈ 3 m). The effect of the degree of immersion of the trips for h / δ ≳ 1 is shown to play a secondary role. The one-point diagnostic quantities used to assess the degree of recovery of the canonical properties are the friction coefficient (representative of the inner motions), the shape factor and wake parameter (representative of the wake regions); they provide a severe test to be applied to artificially generated boundary layers. Simultaneous two-point velocity measurements of both spanwise and wall-normal correlations and the modulation of inner velocity by the outer structures show that there are two different formation mechanisms for the boundary layer. The trips with high aspect ratio and uniform distributed blockage leave the inner motions of the boundary layer relatively undisturbed, which subsequently drive the mixing of the obstacles’ wake with the wall-bounded flow (wall-driven). In contrast, the low aspect-ratio trips with non-uniform blockage destroy the inner structures, which are then re-formed further downstream under the influence of the wake of the trips (wake-driven).</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1007/s10546-016-0139-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Blockage ; Boundary layer ; Boundary layers ; Computational fluid dynamics ; Earth and Environmental Science ; Earth Sciences ; Friction ; Meteorology ; Obstacles ; Research Article ; Reynolds number ; Turbulent boundary layer ; Turbulent flow ; Velocity measurement ; Wakes</subject><ispartof>Boundary-layer meteorology, 2016-08, Vol.160 (2), p.201-224</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-31c79b73ee6356612413e572f457bb19568a5bd253584436b87994acfa290cd3</citedby><cites>FETCH-LOGICAL-c464t-31c79b73ee6356612413e572f457bb19568a5bd253584436b87994acfa290cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10546-016-0139-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10546-016-0139-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rodríguez-López, Eduardo</creatorcontrib><creatorcontrib>Bruce, Paul J. K.</creatorcontrib><creatorcontrib>Buxton, Oliver R. H.</creatorcontrib><title>On the Formation Mechanisms of Artificially Generated High Reynolds Number Turbulent Boundary Layers</title><title>Boundary-layer meteorology</title><addtitle>Boundary-Layer Meteorol</addtitle><description>We investigate the evolution of an artificially thick turbulent boundary layer generated by two families of small obstacles (divided into uniform and non-uniform wall normal distributions of blockage). One- and two-point velocity measurements using constant temperature anemometry show that the canonical behaviour of a boundary layer is recovered after an adaptation region downstream of the trips presenting 150 % higher momentum thickness (or equivalently, Reynolds number) than the natural case for the same downstream distance ( x ≈ 3 m). The effect of the degree of immersion of the trips for h / δ ≳ 1 is shown to play a secondary role. The one-point diagnostic quantities used to assess the degree of recovery of the canonical properties are the friction coefficient (representative of the inner motions), the shape factor and wake parameter (representative of the wake regions); they provide a severe test to be applied to artificially generated boundary layers. Simultaneous two-point velocity measurements of both spanwise and wall-normal correlations and the modulation of inner velocity by the outer structures show that there are two different formation mechanisms for the boundary layer. The trips with high aspect ratio and uniform distributed blockage leave the inner motions of the boundary layer relatively undisturbed, which subsequently drive the mixing of the obstacles’ wake with the wall-bounded flow (wall-driven). In contrast, the low aspect-ratio trips with non-uniform blockage destroy the inner structures, which are then re-formed further downstream under the influence of the wake of the trips (wake-driven).</description><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Blockage</subject><subject>Boundary layer</subject><subject>Boundary layers</subject><subject>Computational fluid dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Friction</subject><subject>Meteorology</subject><subject>Obstacles</subject><subject>Research Article</subject><subject>Reynolds number</subject><subject>Turbulent boundary layer</subject><subject>Turbulent flow</subject><subject>Velocity measurement</subject><subject>Wakes</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkU9rHCEYh6W00G3aD9Cb0Esvk_hf57gNTVLYNlD2Lo7zzq5hRlOdOey3r8P0UAqFKPKiPM-L-kPoIyXXlBB9UyiRQjWErou3jXmFdlRq3lCh2Wu0I4SoxnAq3qJ3pTzVraaS7FD_GPF8BnyX8uTmkCL-Dv7sYihTwWnA-zyHIfjgxvGC7yFCdjP0-CGczvgnXGIa-4J_LFMHGR-X3C0jxBl_SUvsXb7gg7tALu_Rm8GNBT78qVfoePf1ePvQHB7vv93uD40XSswNp163neYAikulKBOUg9RsEFJ3HW2lMk52PZNcGiG46oxuW-H84FhLfM-v0Oet7XNOvxYos51C8TCOLkJaiqWGyTo0FS9AiVGMtq2q6Kd_0Ke05FjfsVKccEn42vB6o05uBBvikObsfJ09TMGnCEOo53uhiWTS8LYKdBN8TqVkGOxzDlP9M0uJXSO1W6S2RmrXSK2pDtucUtl4gvzXVf4r_QaSmaGK</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Rodríguez-López, Eduardo</creator><creator>Bruce, Paul J. K.</creator><creator>Buxton, Oliver R. H.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20160801</creationdate><title>On the Formation Mechanisms of Artificially Generated High Reynolds Number Turbulent Boundary Layers</title><author>Rodríguez-López, Eduardo ; Bruce, Paul J. K. ; Buxton, Oliver R. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-31c79b73ee6356612413e572f457bb19568a5bd253584436b87994acfa290cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Blockage</topic><topic>Boundary layer</topic><topic>Boundary layers</topic><topic>Computational fluid dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Friction</topic><topic>Meteorology</topic><topic>Obstacles</topic><topic>Research Article</topic><topic>Reynolds number</topic><topic>Turbulent boundary layer</topic><topic>Turbulent flow</topic><topic>Velocity measurement</topic><topic>Wakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-López, Eduardo</creatorcontrib><creatorcontrib>Bruce, Paul J. K.</creatorcontrib><creatorcontrib>Buxton, Oliver R. H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-López, Eduardo</au><au>Bruce, Paul J. K.</au><au>Buxton, Oliver R. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Formation Mechanisms of Artificially Generated High Reynolds Number Turbulent Boundary Layers</atitle><jtitle>Boundary-layer meteorology</jtitle><stitle>Boundary-Layer Meteorol</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>160</volume><issue>2</issue><spage>201</spage><epage>224</epage><pages>201-224</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><abstract>We investigate the evolution of an artificially thick turbulent boundary layer generated by two families of small obstacles (divided into uniform and non-uniform wall normal distributions of blockage). One- and two-point velocity measurements using constant temperature anemometry show that the canonical behaviour of a boundary layer is recovered after an adaptation region downstream of the trips presenting 150 % higher momentum thickness (or equivalently, Reynolds number) than the natural case for the same downstream distance ( x ≈ 3 m). The effect of the degree of immersion of the trips for h / δ ≳ 1 is shown to play a secondary role. The one-point diagnostic quantities used to assess the degree of recovery of the canonical properties are the friction coefficient (representative of the inner motions), the shape factor and wake parameter (representative of the wake regions); they provide a severe test to be applied to artificially generated boundary layers. Simultaneous two-point velocity measurements of both spanwise and wall-normal correlations and the modulation of inner velocity by the outer structures show that there are two different formation mechanisms for the boundary layer. The trips with high aspect ratio and uniform distributed blockage leave the inner motions of the boundary layer relatively undisturbed, which subsequently drive the mixing of the obstacles’ wake with the wall-bounded flow (wall-driven). In contrast, the low aspect-ratio trips with non-uniform blockage destroy the inner structures, which are then re-formed further downstream under the influence of the wake of the trips (wake-driven).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10546-016-0139-8</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-8314
ispartof Boundary-layer meteorology, 2016-08, Vol.160 (2), p.201-224
issn 0006-8314
1573-1472
language eng
recordid cdi_proquest_miscellaneous_1825555714
source SpringerLink Journals - AutoHoldings
subjects Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Blockage
Boundary layer
Boundary layers
Computational fluid dynamics
Earth and Environmental Science
Earth Sciences
Friction
Meteorology
Obstacles
Research Article
Reynolds number
Turbulent boundary layer
Turbulent flow
Velocity measurement
Wakes
title On the Formation Mechanisms of Artificially Generated High Reynolds Number Turbulent Boundary Layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Formation%20Mechanisms%20of%20Artificially%20Generated%20High%20Reynolds%20Number%20Turbulent%20Boundary%20Layers&rft.jtitle=Boundary-layer%20meteorology&rft.au=Rodr%C3%ADguez-L%C3%B3pez,%20Eduardo&rft.date=2016-08-01&rft.volume=160&rft.issue=2&rft.spage=201&rft.epage=224&rft.pages=201-224&rft.issn=0006-8314&rft.eissn=1573-1472&rft_id=info:doi/10.1007/s10546-016-0139-8&rft_dat=%3Cgale_proqu%3EA470525839%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1803035034&rft_id=info:pmid/&rft_galeid=A470525839&rfr_iscdi=true