Atomistic study on the interaction of nitrogen and Mg lattice and the nitride formation in nanocrystalline Mg alloys synthesized using cryomilling process
Cryomilling is a broadly applied technique to synthesize nanostructured alloys and composites through powder metallurgy (PM) processing. Understanding the interactions between liquid nitrogen and the nanostructured metal powder is important as it can potentially impact the mechanical performance of...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2016-08, Vol.115, p.295-307 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 307 |
---|---|
container_issue | |
container_start_page | 295 |
container_title | Acta materialia |
container_volume | 115 |
creator | Nezafati, Marjan Giri, Anit Hofmeister, Clara Cho, Kyu Schneider, Matthew M. Zhou, Le Sohn, Yongho Kim, Chang-Soo |
description | Cryomilling is a broadly applied technique to synthesize nanostructured alloys and composites through powder metallurgy (PM) processing. Understanding the interactions between liquid nitrogen and the nanostructured metal powder is important as it can potentially impact the mechanical performance of these materials. In this study, we performed a series of ab initio density functional theory (DFT) computations to examine the interactions of liquid nitrogen and Mg-based matrices and the formation of Mg-nitrides. The diffusion energy barriers of nitrogen in the Mg and/or Mg-Al alloys were systematically quantified by calculating the transition state (TS) for the displacement of nitrogen between two neighboring equivalent positions. The TS calculation results indicate that diffusion of N atoms is much easier than that of N2 molecule in the Mg matrix. It is predicted that at least ∼0.4 eV is required to overcome the diffusion energy barrier in the Mg matrix. We also quantified the formation energy of Mg nitride in the matrix. The presence of Mg nitride was demonstrated experimentally using transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). In conjunction with the DFT computations and TEM/EELS analysis, we performed analytical calculations for the strain energy introduced during cryomilling to examine the impacts of processing parameters.
[Display omitted] |
doi_str_mv | 10.1016/j.actamat.2016.06.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825554209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645416304311</els_id><sourcerecordid>1825554209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-a96311051d9e39b78c17dc15768a16a2f93bed46342a1e169bb071c1057beb7b3</originalsourceid><addsrcrecordid>eNqFkU1rHDEMhofSQtM0PyHgYy-ztcbj-TiVEPoFCbm0Z-OxNVsvs3ZqeQvTn5JfG00394LAEn6fV7JVVdcgdyCh-3jYWVfs0ZZdw-VOckDzqrqAoVd102r1mnOlx7prdfu2ekd0kKzoW3lRPd2UdAxUghNUTn4VKYryC0WIBTPbBq7TLGIoOe0xChu9uN-LxRZG8F-5ybf74FHMKfMcGxSiiDYml1cqdllCxI3jLK0kaI1MUfiLXpwoxL1gHc-x6fbiMSeHRO-rN7NdCK9ezsvq55fPP26_1XcPX7_f3tzVTg1jqe3YKQCpwY-oxqkfHPTege67wUJnm3lUE_q2U21jAaEbp0n24JjoJ5z6SV1WH86-3Pf3CakY_hCHy2IjphMZGBqtddvIkaX6LHU5EWWczWMOR5tXA9JsuzAH87ILs-3CSA5omPt05pDf8SdgNuQCRoc-ZHTF-BT-4_AMPziZJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825554209</pqid></control><display><type>article</type><title>Atomistic study on the interaction of nitrogen and Mg lattice and the nitride formation in nanocrystalline Mg alloys synthesized using cryomilling process</title><source>Elsevier ScienceDirect Journals</source><creator>Nezafati, Marjan ; Giri, Anit ; Hofmeister, Clara ; Cho, Kyu ; Schneider, Matthew M. ; Zhou, Le ; Sohn, Yongho ; Kim, Chang-Soo</creator><creatorcontrib>Nezafati, Marjan ; Giri, Anit ; Hofmeister, Clara ; Cho, Kyu ; Schneider, Matthew M. ; Zhou, Le ; Sohn, Yongho ; Kim, Chang-Soo</creatorcontrib><description>Cryomilling is a broadly applied technique to synthesize nanostructured alloys and composites through powder metallurgy (PM) processing. Understanding the interactions between liquid nitrogen and the nanostructured metal powder is important as it can potentially impact the mechanical performance of these materials. In this study, we performed a series of ab initio density functional theory (DFT) computations to examine the interactions of liquid nitrogen and Mg-based matrices and the formation of Mg-nitrides. The diffusion energy barriers of nitrogen in the Mg and/or Mg-Al alloys were systematically quantified by calculating the transition state (TS) for the displacement of nitrogen between two neighboring equivalent positions. The TS calculation results indicate that diffusion of N atoms is much easier than that of N2 molecule in the Mg matrix. It is predicted that at least ∼0.4 eV is required to overcome the diffusion energy barrier in the Mg matrix. We also quantified the formation energy of Mg nitride in the matrix. The presence of Mg nitride was demonstrated experimentally using transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). In conjunction with the DFT computations and TEM/EELS analysis, we performed analytical calculations for the strain energy introduced during cryomilling to examine the impacts of processing parameters.
[Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2016.06.012</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Density functional theory (DFT) ; Diffusion ; Electron energy-loss spectroscopy (EELS) ; Formations ; Intermetallic compounds ; Magnesium alloys ; Magnesium base alloys ; Mathematical analysis ; Nanocrystalline alloys ; Nanostructure ; Nitrides ; Nitrogen ; Powder processing ; Transmission electron microscopy ; Transmission electron microscopy (TEM)</subject><ispartof>Acta materialia, 2016-08, Vol.115, p.295-307</ispartof><rights>2016 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-a96311051d9e39b78c17dc15768a16a2f93bed46342a1e169bb071c1057beb7b3</citedby><cites>FETCH-LOGICAL-c389t-a96311051d9e39b78c17dc15768a16a2f93bed46342a1e169bb071c1057beb7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645416304311$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Nezafati, Marjan</creatorcontrib><creatorcontrib>Giri, Anit</creatorcontrib><creatorcontrib>Hofmeister, Clara</creatorcontrib><creatorcontrib>Cho, Kyu</creatorcontrib><creatorcontrib>Schneider, Matthew M.</creatorcontrib><creatorcontrib>Zhou, Le</creatorcontrib><creatorcontrib>Sohn, Yongho</creatorcontrib><creatorcontrib>Kim, Chang-Soo</creatorcontrib><title>Atomistic study on the interaction of nitrogen and Mg lattice and the nitride formation in nanocrystalline Mg alloys synthesized using cryomilling process</title><title>Acta materialia</title><description>Cryomilling is a broadly applied technique to synthesize nanostructured alloys and composites through powder metallurgy (PM) processing. Understanding the interactions between liquid nitrogen and the nanostructured metal powder is important as it can potentially impact the mechanical performance of these materials. In this study, we performed a series of ab initio density functional theory (DFT) computations to examine the interactions of liquid nitrogen and Mg-based matrices and the formation of Mg-nitrides. The diffusion energy barriers of nitrogen in the Mg and/or Mg-Al alloys were systematically quantified by calculating the transition state (TS) for the displacement of nitrogen between two neighboring equivalent positions. The TS calculation results indicate that diffusion of N atoms is much easier than that of N2 molecule in the Mg matrix. It is predicted that at least ∼0.4 eV is required to overcome the diffusion energy barrier in the Mg matrix. We also quantified the formation energy of Mg nitride in the matrix. The presence of Mg nitride was demonstrated experimentally using transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). In conjunction with the DFT computations and TEM/EELS analysis, we performed analytical calculations for the strain energy introduced during cryomilling to examine the impacts of processing parameters.
[Display omitted]</description><subject>Density functional theory (DFT)</subject><subject>Diffusion</subject><subject>Electron energy-loss spectroscopy (EELS)</subject><subject>Formations</subject><subject>Intermetallic compounds</subject><subject>Magnesium alloys</subject><subject>Magnesium base alloys</subject><subject>Mathematical analysis</subject><subject>Nanocrystalline alloys</subject><subject>Nanostructure</subject><subject>Nitrides</subject><subject>Nitrogen</subject><subject>Powder processing</subject><subject>Transmission electron microscopy</subject><subject>Transmission electron microscopy (TEM)</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkU1rHDEMhofSQtM0PyHgYy-ztcbj-TiVEPoFCbm0Z-OxNVsvs3ZqeQvTn5JfG00394LAEn6fV7JVVdcgdyCh-3jYWVfs0ZZdw-VOckDzqrqAoVd102r1mnOlx7prdfu2ekd0kKzoW3lRPd2UdAxUghNUTn4VKYryC0WIBTPbBq7TLGIoOe0xChu9uN-LxRZG8F-5ybf74FHMKfMcGxSiiDYml1cqdllCxI3jLK0kaI1MUfiLXpwoxL1gHc-x6fbiMSeHRO-rN7NdCK9ezsvq55fPP26_1XcPX7_f3tzVTg1jqe3YKQCpwY-oxqkfHPTege67wUJnm3lUE_q2U21jAaEbp0n24JjoJ5z6SV1WH86-3Pf3CakY_hCHy2IjphMZGBqtddvIkaX6LHU5EWWczWMOR5tXA9JsuzAH87ILs-3CSA5omPt05pDf8SdgNuQCRoc-ZHTF-BT-4_AMPziZJg</recordid><startdate>20160815</startdate><enddate>20160815</enddate><creator>Nezafati, Marjan</creator><creator>Giri, Anit</creator><creator>Hofmeister, Clara</creator><creator>Cho, Kyu</creator><creator>Schneider, Matthew M.</creator><creator>Zhou, Le</creator><creator>Sohn, Yongho</creator><creator>Kim, Chang-Soo</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20160815</creationdate><title>Atomistic study on the interaction of nitrogen and Mg lattice and the nitride formation in nanocrystalline Mg alloys synthesized using cryomilling process</title><author>Nezafati, Marjan ; Giri, Anit ; Hofmeister, Clara ; Cho, Kyu ; Schneider, Matthew M. ; Zhou, Le ; Sohn, Yongho ; Kim, Chang-Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-a96311051d9e39b78c17dc15768a16a2f93bed46342a1e169bb071c1057beb7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Density functional theory (DFT)</topic><topic>Diffusion</topic><topic>Electron energy-loss spectroscopy (EELS)</topic><topic>Formations</topic><topic>Intermetallic compounds</topic><topic>Magnesium alloys</topic><topic>Magnesium base alloys</topic><topic>Mathematical analysis</topic><topic>Nanocrystalline alloys</topic><topic>Nanostructure</topic><topic>Nitrides</topic><topic>Nitrogen</topic><topic>Powder processing</topic><topic>Transmission electron microscopy</topic><topic>Transmission electron microscopy (TEM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nezafati, Marjan</creatorcontrib><creatorcontrib>Giri, Anit</creatorcontrib><creatorcontrib>Hofmeister, Clara</creatorcontrib><creatorcontrib>Cho, Kyu</creatorcontrib><creatorcontrib>Schneider, Matthew M.</creatorcontrib><creatorcontrib>Zhou, Le</creatorcontrib><creatorcontrib>Sohn, Yongho</creatorcontrib><creatorcontrib>Kim, Chang-Soo</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nezafati, Marjan</au><au>Giri, Anit</au><au>Hofmeister, Clara</au><au>Cho, Kyu</au><au>Schneider, Matthew M.</au><au>Zhou, Le</au><au>Sohn, Yongho</au><au>Kim, Chang-Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic study on the interaction of nitrogen and Mg lattice and the nitride formation in nanocrystalline Mg alloys synthesized using cryomilling process</atitle><jtitle>Acta materialia</jtitle><date>2016-08-15</date><risdate>2016</risdate><volume>115</volume><spage>295</spage><epage>307</epage><pages>295-307</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Cryomilling is a broadly applied technique to synthesize nanostructured alloys and composites through powder metallurgy (PM) processing. Understanding the interactions between liquid nitrogen and the nanostructured metal powder is important as it can potentially impact the mechanical performance of these materials. In this study, we performed a series of ab initio density functional theory (DFT) computations to examine the interactions of liquid nitrogen and Mg-based matrices and the formation of Mg-nitrides. The diffusion energy barriers of nitrogen in the Mg and/or Mg-Al alloys were systematically quantified by calculating the transition state (TS) for the displacement of nitrogen between two neighboring equivalent positions. The TS calculation results indicate that diffusion of N atoms is much easier than that of N2 molecule in the Mg matrix. It is predicted that at least ∼0.4 eV is required to overcome the diffusion energy barrier in the Mg matrix. We also quantified the formation energy of Mg nitride in the matrix. The presence of Mg nitride was demonstrated experimentally using transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). In conjunction with the DFT computations and TEM/EELS analysis, we performed analytical calculations for the strain energy introduced during cryomilling to examine the impacts of processing parameters.
[Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2016.06.012</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2016-08, Vol.115, p.295-307 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825554209 |
source | Elsevier ScienceDirect Journals |
subjects | Density functional theory (DFT) Diffusion Electron energy-loss spectroscopy (EELS) Formations Intermetallic compounds Magnesium alloys Magnesium base alloys Mathematical analysis Nanocrystalline alloys Nanostructure Nitrides Nitrogen Powder processing Transmission electron microscopy Transmission electron microscopy (TEM) |
title | Atomistic study on the interaction of nitrogen and Mg lattice and the nitride formation in nanocrystalline Mg alloys synthesized using cryomilling process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20study%20on%20the%20interaction%20of%20nitrogen%20and%20Mg%20lattice%20and%20the%20nitride%20formation%20in%20nanocrystalline%20Mg%20alloys%20synthesized%20using%20cryomilling%20process&rft.jtitle=Acta%20materialia&rft.au=Nezafati,%20Marjan&rft.date=2016-08-15&rft.volume=115&rft.spage=295&rft.epage=307&rft.pages=295-307&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2016.06.012&rft_dat=%3Cproquest_cross%3E1825554209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825554209&rft_id=info:pmid/&rft_els_id=S1359645416304311&rfr_iscdi=true |