An approximate analytical solution of the integral equations of non-axisymmetric contact problems for a ring-shaped domain

An algorithm is developed for solving the integral equations of the first and third kind to which non-axisymmetric mixed problems in continuum mechanics and mathematical physics reduce on replacing the boundary conditions in a ring-shaped domain. The use of the Bubnov–Galerkin procedure in conjuncti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics and mechanics 2015, Vol.79 (6), p.611-617
1. Verfasser: Kovalenko, Ye. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 617
container_issue 6
container_start_page 611
container_title Journal of applied mathematics and mechanics
container_volume 79
creator Kovalenko, Ye. V.
description An algorithm is developed for solving the integral equations of the first and third kind to which non-axisymmetric mixed problems in continuum mechanics and mathematical physics reduce on replacing the boundary conditions in a ring-shaped domain. The use of the Bubnov–Galerkin procedure in conjunction with addition theorems for Bessel functions is the basis of this method. In the final stage of solving integral equations corresponding to arbitrary harmonics of a mixed problem for a ring-shaped domain, the method enables the coefficients of the linear algebraic systems to be represented in the form of simple quadratures that are convenient for numerical implementation. The discussion is carried out using the example of a contact problem in the theory of elasticity for a linearly deformable base of a general type strengthened by a thin coating along its boundary. The effect of the relative thickness of the coating, its stiffness and the shape of the bottom of a ring-shaped punch on the basic contact characteristics is investigated. Publications on the known results are available in the special case of axisymmetric problems and the problem of an inclined ring-shaped punch.
doi_str_mv 10.1016/j.jappmathmech.2016.04.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825551416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021892816300326</els_id><sourcerecordid>1825551416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-523118568c0f1eabfef194a50d7363afb62815fa2fb546fce835a0b991e9fe53</originalsourceid><addsrcrecordid>eNqNkD1PxDAMhisEEp__IWJiaXHapqRsiG8JiYU9clOHy6lNjiSHOH49OR0DI5Mjv_Yj5ymKcw4VB95dLqslrlYzpsVMelHVuVdBWwHIveIIoOal7Gu5_-d9WBzHuATgV9DJo-L7xrFMCP7LZgoxdDhtktU4seindbLeMW9YWhCzLtF7yAF9rHEbxG3ivCvxy8bNPFMKVjPtXUKdWGYOE82RGR8YsmDdexkXuKKRjX5G606LA4NTpLPfelK8Pdy_3T6VL6-Pz7c3L6VuAFIp6oZzKTqpwXDCwZDhfYsCxquma9AMXS25MFibQbSd0SQbgTD0PafekGhOiosdNh_0saaY1GyjpmlCR34dFZe1EIK3vMuj17tRHXyMgYxahawlbBQHtfWtluqvb7X1raBV2XdevtstU_7Lp6WgorbkNI02kE5q9PY_mB_FrpOL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825551416</pqid></control><display><type>article</type><title>An approximate analytical solution of the integral equations of non-axisymmetric contact problems for a ring-shaped domain</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kovalenko, Ye. V.</creator><creatorcontrib>Kovalenko, Ye. V.</creatorcontrib><description>An algorithm is developed for solving the integral equations of the first and third kind to which non-axisymmetric mixed problems in continuum mechanics and mathematical physics reduce on replacing the boundary conditions in a ring-shaped domain. The use of the Bubnov–Galerkin procedure in conjunction with addition theorems for Bessel functions is the basis of this method. In the final stage of solving integral equations corresponding to arbitrary harmonics of a mixed problem for a ring-shaped domain, the method enables the coefficients of the linear algebraic systems to be represented in the form of simple quadratures that are convenient for numerical implementation. The discussion is carried out using the example of a contact problem in the theory of elasticity for a linearly deformable base of a general type strengthened by a thin coating along its boundary. The effect of the relative thickness of the coating, its stiffness and the shape of the bottom of a ring-shaped punch on the basic contact characteristics is investigated. Publications on the known results are available in the special case of axisymmetric problems and the problem of an inclined ring-shaped punch.</description><identifier>ISSN: 0021-8928</identifier><identifier>EISSN: 0021-8928</identifier><identifier>DOI: 10.1016/j.jappmathmech.2016.04.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algebra ; Algorithms ; Axisymmetric ; Coating ; Contact ; Integral equations ; Mathematical models ; Punches</subject><ispartof>Journal of applied mathematics and mechanics, 2015, Vol.79 (6), p.611-617</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c300t-523118568c0f1eabfef194a50d7363afb62815fa2fb546fce835a0b991e9fe53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jappmathmech.2016.04.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4021,27921,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Kovalenko, Ye. V.</creatorcontrib><title>An approximate analytical solution of the integral equations of non-axisymmetric contact problems for a ring-shaped domain</title><title>Journal of applied mathematics and mechanics</title><description>An algorithm is developed for solving the integral equations of the first and third kind to which non-axisymmetric mixed problems in continuum mechanics and mathematical physics reduce on replacing the boundary conditions in a ring-shaped domain. The use of the Bubnov–Galerkin procedure in conjunction with addition theorems for Bessel functions is the basis of this method. In the final stage of solving integral equations corresponding to arbitrary harmonics of a mixed problem for a ring-shaped domain, the method enables the coefficients of the linear algebraic systems to be represented in the form of simple quadratures that are convenient for numerical implementation. The discussion is carried out using the example of a contact problem in the theory of elasticity for a linearly deformable base of a general type strengthened by a thin coating along its boundary. The effect of the relative thickness of the coating, its stiffness and the shape of the bottom of a ring-shaped punch on the basic contact characteristics is investigated. Publications on the known results are available in the special case of axisymmetric problems and the problem of an inclined ring-shaped punch.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Axisymmetric</subject><subject>Coating</subject><subject>Contact</subject><subject>Integral equations</subject><subject>Mathematical models</subject><subject>Punches</subject><issn>0021-8928</issn><issn>0021-8928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PxDAMhisEEp__IWJiaXHapqRsiG8JiYU9clOHy6lNjiSHOH49OR0DI5Mjv_Yj5ymKcw4VB95dLqslrlYzpsVMelHVuVdBWwHIveIIoOal7Gu5_-d9WBzHuATgV9DJo-L7xrFMCP7LZgoxdDhtktU4seindbLeMW9YWhCzLtF7yAF9rHEbxG3ivCvxy8bNPFMKVjPtXUKdWGYOE82RGR8YsmDdexkXuKKRjX5G606LA4NTpLPfelK8Pdy_3T6VL6-Pz7c3L6VuAFIp6oZzKTqpwXDCwZDhfYsCxquma9AMXS25MFibQbSd0SQbgTD0PafekGhOiosdNh_0saaY1GyjpmlCR34dFZe1EIK3vMuj17tRHXyMgYxahawlbBQHtfWtluqvb7X1raBV2XdevtstU_7Lp6WgorbkNI02kE5q9PY_mB_FrpOL</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Kovalenko, Ye. V.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>2015</creationdate><title>An approximate analytical solution of the integral equations of non-axisymmetric contact problems for a ring-shaped domain</title><author>Kovalenko, Ye. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-523118568c0f1eabfef194a50d7363afb62815fa2fb546fce835a0b991e9fe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Axisymmetric</topic><topic>Coating</topic><topic>Contact</topic><topic>Integral equations</topic><topic>Mathematical models</topic><topic>Punches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kovalenko, Ye. V.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovalenko, Ye. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An approximate analytical solution of the integral equations of non-axisymmetric contact problems for a ring-shaped domain</atitle><jtitle>Journal of applied mathematics and mechanics</jtitle><date>2015</date><risdate>2015</risdate><volume>79</volume><issue>6</issue><spage>611</spage><epage>617</epage><pages>611-617</pages><issn>0021-8928</issn><eissn>0021-8928</eissn><abstract>An algorithm is developed for solving the integral equations of the first and third kind to which non-axisymmetric mixed problems in continuum mechanics and mathematical physics reduce on replacing the boundary conditions in a ring-shaped domain. The use of the Bubnov–Galerkin procedure in conjunction with addition theorems for Bessel functions is the basis of this method. In the final stage of solving integral equations corresponding to arbitrary harmonics of a mixed problem for a ring-shaped domain, the method enables the coefficients of the linear algebraic systems to be represented in the form of simple quadratures that are convenient for numerical implementation. The discussion is carried out using the example of a contact problem in the theory of elasticity for a linearly deformable base of a general type strengthened by a thin coating along its boundary. The effect of the relative thickness of the coating, its stiffness and the shape of the bottom of a ring-shaped punch on the basic contact characteristics is investigated. Publications on the known results are available in the special case of axisymmetric problems and the problem of an inclined ring-shaped punch.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jappmathmech.2016.04.008</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8928
ispartof Journal of applied mathematics and mechanics, 2015, Vol.79 (6), p.611-617
issn 0021-8928
0021-8928
language eng
recordid cdi_proquest_miscellaneous_1825551416
source Elsevier ScienceDirect Journals Complete
subjects Algebra
Algorithms
Axisymmetric
Coating
Contact
Integral equations
Mathematical models
Punches
title An approximate analytical solution of the integral equations of non-axisymmetric contact problems for a ring-shaped domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20approximate%20analytical%20solution%20of%20the%20integral%20equations%20of%20non-axisymmetric%20contact%20problems%20for%20a%20ring-shaped%20domain&rft.jtitle=Journal%20of%20applied%20mathematics%20and%20mechanics&rft.au=Kovalenko,%20Ye.%20V.&rft.date=2015&rft.volume=79&rft.issue=6&rft.spage=611&rft.epage=617&rft.pages=611-617&rft.issn=0021-8928&rft.eissn=0021-8928&rft_id=info:doi/10.1016/j.jappmathmech.2016.04.008&rft_dat=%3Cproquest_cross%3E1825551416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825551416&rft_id=info:pmid/&rft_els_id=S0021892816300326&rfr_iscdi=true