Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section

This paper presents a new approach for investigating the vibration behaviors of axially functionally graded Timoshenko beams with non-uniform cross-section. By introducing an auxiliary function, we can change the coupled governing equations with variable coefficients for the deflection and rotation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part B, Engineering Engineering, 2013-02, Vol.45 (1), p.1493-1498
Hauptverfasser: Huang, Yong, Yang, Ling-E, Luo, Qi-Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1498
container_issue 1
container_start_page 1493
container_title Composites. Part B, Engineering
container_volume 45
creator Huang, Yong
Yang, Ling-E
Luo, Qi-Zhi
description This paper presents a new approach for investigating the vibration behaviors of axially functionally graded Timoshenko beams with non-uniform cross-section. By introducing an auxiliary function, we can change the coupled governing equations with variable coefficients for the deflection and rotation to a single governing equation. Moreover, all physical quantities can be expressed in terms of the solution of the resulting equation. Making use of power series for unknown function, we can transform the single equation to a system of linear algebraic equations and will get a characteristic equation in natural frequencies for different boundary conditions. An advantage of the suggested approach is that the derived characteristic equation is a polynomial equation, where the lower and higher-order natural frequencies can be determined simultaneously from the multi-roots. Several examples of estimating natural frequencies for axially grade beams and non-uniform beams are presented, which show that our method has fast convergence and obtained numerical results have high accuracy.
doi_str_mv 10.1016/j.compositesb.2012.09.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825549892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359836812005458</els_id><sourcerecordid>1825549892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-f1043ca4e3c34a95e467090246c0f6eba09e64b5e492ee57164c62665a9c416c3</originalsourceid><addsrcrecordid>eNqNkE1P3DAQhiPUSqW0v6HuoRKXhLFjO_GxWvElIXEAjpXleMfgJbG3dpaWf493FyGOnMYzeub16KmqnxQaClSerBobp3XMfsY8NAwoa0A1QMVBdUj7TtUUpPpU3q1Qdd_K_kv1NecVAHDRssPqz1lCJE9-SGb2MZDoiPnvzTg-E7cJdjvbNffJLHFJbv0U8wOGx0gGNFMm__z8QEIM9SZ4F9NEbIo51xl3q9-qz86MGb-_1qPq7uz0dnFRX12fXy5-X9WWczrXjgJvreHY2pYbJZDLDhQwLi04iYMBhZIPZa4Youio5FYyKYVRllNp26PqeJ-7TvHvBvOsJ58tjqMJGDdZ054JwVWvWEHVHt0dmtDpdfKTSc-agt4q1Sv9TqneKtWgdFFadn-9fmOyNaNLJlif3wKY7GTP-q5wP_acM1Gb-1SYu5sSJAAoFZzLQiz2BBYrTx6TztZjsLj0qajTy-g_cM8LcBWdGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825549892</pqid></control><display><type>article</type><title>Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, Yong ; Yang, Ling-E ; Luo, Qi-Zhi</creator><creatorcontrib>Huang, Yong ; Yang, Ling-E ; Luo, Qi-Zhi</creatorcontrib><description>This paper presents a new approach for investigating the vibration behaviors of axially functionally graded Timoshenko beams with non-uniform cross-section. By introducing an auxiliary function, we can change the coupled governing equations with variable coefficients for the deflection and rotation to a single governing equation. Moreover, all physical quantities can be expressed in terms of the solution of the resulting equation. Making use of power series for unknown function, we can transform the single equation to a system of linear algebraic equations and will get a characteristic equation in natural frequencies for different boundary conditions. An advantage of the suggested approach is that the derived characteristic equation is a polynomial equation, where the lower and higher-order natural frequencies can be determined simultaneously from the multi-roots. Several examples of estimating natural frequencies for axially grade beams and non-uniform beams are presented, which show that our method has fast convergence and obtained numerical results have high accuracy.</description><identifier>ISSN: 1359-8368</identifier><identifier>EISSN: 1879-1069</identifier><identifier>DOI: 10.1016/j.compositesb.2012.09.015</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algebra ; Applied sciences ; Axially functionally graded tapered beams ; B. Vibration ; C. Analytical modelling ; C. Numerical analysis ; Composites ; Cross sections ; equations ; Estimating ; Exact sciences and technology ; Forms of application and semi-finished materials ; Functionally gradient materials ; Laminates ; Mathematical analysis ; Mathematical models ; mechanical stress ; Physicochemistry of polymers ; Polymer industry, paints, wood ; Resonant frequency ; Technology of polymers ; Timoshenko beams ; vibration</subject><ispartof>Composites. Part B, Engineering, 2013-02, Vol.45 (1), p.1493-1498</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-f1043ca4e3c34a95e467090246c0f6eba09e64b5e492ee57164c62665a9c416c3</citedby><cites>FETCH-LOGICAL-c441t-f1043ca4e3c34a95e467090246c0f6eba09e64b5e492ee57164c62665a9c416c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359836812005458$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26768287$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Yong</creatorcontrib><creatorcontrib>Yang, Ling-E</creatorcontrib><creatorcontrib>Luo, Qi-Zhi</creatorcontrib><title>Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section</title><title>Composites. Part B, Engineering</title><description>This paper presents a new approach for investigating the vibration behaviors of axially functionally graded Timoshenko beams with non-uniform cross-section. By introducing an auxiliary function, we can change the coupled governing equations with variable coefficients for the deflection and rotation to a single governing equation. Moreover, all physical quantities can be expressed in terms of the solution of the resulting equation. Making use of power series for unknown function, we can transform the single equation to a system of linear algebraic equations and will get a characteristic equation in natural frequencies for different boundary conditions. An advantage of the suggested approach is that the derived characteristic equation is a polynomial equation, where the lower and higher-order natural frequencies can be determined simultaneously from the multi-roots. Several examples of estimating natural frequencies for axially grade beams and non-uniform beams are presented, which show that our method has fast convergence and obtained numerical results have high accuracy.</description><subject>Algebra</subject><subject>Applied sciences</subject><subject>Axially functionally graded tapered beams</subject><subject>B. Vibration</subject><subject>C. Analytical modelling</subject><subject>C. Numerical analysis</subject><subject>Composites</subject><subject>Cross sections</subject><subject>equations</subject><subject>Estimating</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Functionally gradient materials</subject><subject>Laminates</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>mechanical stress</subject><subject>Physicochemistry of polymers</subject><subject>Polymer industry, paints, wood</subject><subject>Resonant frequency</subject><subject>Technology of polymers</subject><subject>Timoshenko beams</subject><subject>vibration</subject><issn>1359-8368</issn><issn>1879-1069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkE1P3DAQhiPUSqW0v6HuoRKXhLFjO_GxWvElIXEAjpXleMfgJbG3dpaWf493FyGOnMYzeub16KmqnxQaClSerBobp3XMfsY8NAwoa0A1QMVBdUj7TtUUpPpU3q1Qdd_K_kv1NecVAHDRssPqz1lCJE9-SGb2MZDoiPnvzTg-E7cJdjvbNffJLHFJbv0U8wOGx0gGNFMm__z8QEIM9SZ4F9NEbIo51xl3q9-qz86MGb-_1qPq7uz0dnFRX12fXy5-X9WWczrXjgJvreHY2pYbJZDLDhQwLi04iYMBhZIPZa4Youio5FYyKYVRllNp26PqeJ-7TvHvBvOsJ58tjqMJGDdZ054JwVWvWEHVHt0dmtDpdfKTSc-agt4q1Sv9TqneKtWgdFFadn-9fmOyNaNLJlif3wKY7GTP-q5wP_acM1Gb-1SYu5sSJAAoFZzLQiz2BBYrTx6TztZjsLj0qajTy-g_cM8LcBWdGw</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Huang, Yong</creator><creator>Yang, Ling-E</creator><creator>Luo, Qi-Zhi</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20130201</creationdate><title>Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section</title><author>Huang, Yong ; Yang, Ling-E ; Luo, Qi-Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-f1043ca4e3c34a95e467090246c0f6eba09e64b5e492ee57164c62665a9c416c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>Applied sciences</topic><topic>Axially functionally graded tapered beams</topic><topic>B. Vibration</topic><topic>C. Analytical modelling</topic><topic>C. Numerical analysis</topic><topic>Composites</topic><topic>Cross sections</topic><topic>equations</topic><topic>Estimating</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Functionally gradient materials</topic><topic>Laminates</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>mechanical stress</topic><topic>Physicochemistry of polymers</topic><topic>Polymer industry, paints, wood</topic><topic>Resonant frequency</topic><topic>Technology of polymers</topic><topic>Timoshenko beams</topic><topic>vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yong</creatorcontrib><creatorcontrib>Yang, Ling-E</creatorcontrib><creatorcontrib>Luo, Qi-Zhi</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Composites. Part B, Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yong</au><au>Yang, Ling-E</au><au>Luo, Qi-Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section</atitle><jtitle>Composites. Part B, Engineering</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>45</volume><issue>1</issue><spage>1493</spage><epage>1498</epage><pages>1493-1498</pages><issn>1359-8368</issn><eissn>1879-1069</eissn><abstract>This paper presents a new approach for investigating the vibration behaviors of axially functionally graded Timoshenko beams with non-uniform cross-section. By introducing an auxiliary function, we can change the coupled governing equations with variable coefficients for the deflection and rotation to a single governing equation. Moreover, all physical quantities can be expressed in terms of the solution of the resulting equation. Making use of power series for unknown function, we can transform the single equation to a system of linear algebraic equations and will get a characteristic equation in natural frequencies for different boundary conditions. An advantage of the suggested approach is that the derived characteristic equation is a polynomial equation, where the lower and higher-order natural frequencies can be determined simultaneously from the multi-roots. Several examples of estimating natural frequencies for axially grade beams and non-uniform beams are presented, which show that our method has fast convergence and obtained numerical results have high accuracy.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesb.2012.09.015</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-8368
ispartof Composites. Part B, Engineering, 2013-02, Vol.45 (1), p.1493-1498
issn 1359-8368
1879-1069
language eng
recordid cdi_proquest_miscellaneous_1825549892
source Elsevier ScienceDirect Journals
subjects Algebra
Applied sciences
Axially functionally graded tapered beams
B. Vibration
C. Analytical modelling
C. Numerical analysis
Composites
Cross sections
equations
Estimating
Exact sciences and technology
Forms of application and semi-finished materials
Functionally gradient materials
Laminates
Mathematical analysis
Mathematical models
mechanical stress
Physicochemistry of polymers
Polymer industry, paints, wood
Resonant frequency
Technology of polymers
Timoshenko beams
vibration
title Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20vibration%20of%20axially%20functionally%20graded%20Timoshenko%20beams%20with%20non-uniform%20cross-section&rft.jtitle=Composites.%20Part%20B,%20Engineering&rft.au=Huang,%20Yong&rft.date=2013-02-01&rft.volume=45&rft.issue=1&rft.spage=1493&rft.epage=1498&rft.pages=1493-1498&rft.issn=1359-8368&rft.eissn=1879-1069&rft_id=info:doi/10.1016/j.compositesb.2012.09.015&rft_dat=%3Cproquest_cross%3E1825549892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825549892&rft_id=info:pmid/&rft_els_id=S1359836812005458&rfr_iscdi=true