Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section
This paper presents a new approach for investigating the vibration behaviors of axially functionally graded Timoshenko beams with non-uniform cross-section. By introducing an auxiliary function, we can change the coupled governing equations with variable coefficients for the deflection and rotation...
Gespeichert in:
Veröffentlicht in: | Composites. Part B, Engineering Engineering, 2013-02, Vol.45 (1), p.1493-1498 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1498 |
---|---|
container_issue | 1 |
container_start_page | 1493 |
container_title | Composites. Part B, Engineering |
container_volume | 45 |
creator | Huang, Yong Yang, Ling-E Luo, Qi-Zhi |
description | This paper presents a new approach for investigating the vibration behaviors of axially functionally graded Timoshenko beams with non-uniform cross-section. By introducing an auxiliary function, we can change the coupled governing equations with variable coefficients for the deflection and rotation to a single governing equation. Moreover, all physical quantities can be expressed in terms of the solution of the resulting equation. Making use of power series for unknown function, we can transform the single equation to a system of linear algebraic equations and will get a characteristic equation in natural frequencies for different boundary conditions. An advantage of the suggested approach is that the derived characteristic equation is a polynomial equation, where the lower and higher-order natural frequencies can be determined simultaneously from the multi-roots. Several examples of estimating natural frequencies for axially grade beams and non-uniform beams are presented, which show that our method has fast convergence and obtained numerical results have high accuracy. |
doi_str_mv | 10.1016/j.compositesb.2012.09.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825549892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359836812005458</els_id><sourcerecordid>1825549892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-f1043ca4e3c34a95e467090246c0f6eba09e64b5e492ee57164c62665a9c416c3</originalsourceid><addsrcrecordid>eNqNkE1P3DAQhiPUSqW0v6HuoRKXhLFjO_GxWvElIXEAjpXleMfgJbG3dpaWf493FyGOnMYzeub16KmqnxQaClSerBobp3XMfsY8NAwoa0A1QMVBdUj7TtUUpPpU3q1Qdd_K_kv1NecVAHDRssPqz1lCJE9-SGb2MZDoiPnvzTg-E7cJdjvbNffJLHFJbv0U8wOGx0gGNFMm__z8QEIM9SZ4F9NEbIo51xl3q9-qz86MGb-_1qPq7uz0dnFRX12fXy5-X9WWczrXjgJvreHY2pYbJZDLDhQwLi04iYMBhZIPZa4Youio5FYyKYVRllNp26PqeJ-7TvHvBvOsJ58tjqMJGDdZ054JwVWvWEHVHt0dmtDpdfKTSc-agt4q1Sv9TqneKtWgdFFadn-9fmOyNaNLJlif3wKY7GTP-q5wP_acM1Gb-1SYu5sSJAAoFZzLQiz2BBYrTx6TztZjsLj0qajTy-g_cM8LcBWdGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825549892</pqid></control><display><type>article</type><title>Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, Yong ; Yang, Ling-E ; Luo, Qi-Zhi</creator><creatorcontrib>Huang, Yong ; Yang, Ling-E ; Luo, Qi-Zhi</creatorcontrib><description>This paper presents a new approach for investigating the vibration behaviors of axially functionally graded Timoshenko beams with non-uniform cross-section. By introducing an auxiliary function, we can change the coupled governing equations with variable coefficients for the deflection and rotation to a single governing equation. Moreover, all physical quantities can be expressed in terms of the solution of the resulting equation. Making use of power series for unknown function, we can transform the single equation to a system of linear algebraic equations and will get a characteristic equation in natural frequencies for different boundary conditions. An advantage of the suggested approach is that the derived characteristic equation is a polynomial equation, where the lower and higher-order natural frequencies can be determined simultaneously from the multi-roots. Several examples of estimating natural frequencies for axially grade beams and non-uniform beams are presented, which show that our method has fast convergence and obtained numerical results have high accuracy.</description><identifier>ISSN: 1359-8368</identifier><identifier>EISSN: 1879-1069</identifier><identifier>DOI: 10.1016/j.compositesb.2012.09.015</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algebra ; Applied sciences ; Axially functionally graded tapered beams ; B. Vibration ; C. Analytical modelling ; C. Numerical analysis ; Composites ; Cross sections ; equations ; Estimating ; Exact sciences and technology ; Forms of application and semi-finished materials ; Functionally gradient materials ; Laminates ; Mathematical analysis ; Mathematical models ; mechanical stress ; Physicochemistry of polymers ; Polymer industry, paints, wood ; Resonant frequency ; Technology of polymers ; Timoshenko beams ; vibration</subject><ispartof>Composites. Part B, Engineering, 2013-02, Vol.45 (1), p.1493-1498</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-f1043ca4e3c34a95e467090246c0f6eba09e64b5e492ee57164c62665a9c416c3</citedby><cites>FETCH-LOGICAL-c441t-f1043ca4e3c34a95e467090246c0f6eba09e64b5e492ee57164c62665a9c416c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359836812005458$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26768287$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Yong</creatorcontrib><creatorcontrib>Yang, Ling-E</creatorcontrib><creatorcontrib>Luo, Qi-Zhi</creatorcontrib><title>Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section</title><title>Composites. Part B, Engineering</title><description>This paper presents a new approach for investigating the vibration behaviors of axially functionally graded Timoshenko beams with non-uniform cross-section. By introducing an auxiliary function, we can change the coupled governing equations with variable coefficients for the deflection and rotation to a single governing equation. Moreover, all physical quantities can be expressed in terms of the solution of the resulting equation. Making use of power series for unknown function, we can transform the single equation to a system of linear algebraic equations and will get a characteristic equation in natural frequencies for different boundary conditions. An advantage of the suggested approach is that the derived characteristic equation is a polynomial equation, where the lower and higher-order natural frequencies can be determined simultaneously from the multi-roots. Several examples of estimating natural frequencies for axially grade beams and non-uniform beams are presented, which show that our method has fast convergence and obtained numerical results have high accuracy.</description><subject>Algebra</subject><subject>Applied sciences</subject><subject>Axially functionally graded tapered beams</subject><subject>B. Vibration</subject><subject>C. Analytical modelling</subject><subject>C. Numerical analysis</subject><subject>Composites</subject><subject>Cross sections</subject><subject>equations</subject><subject>Estimating</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Functionally gradient materials</subject><subject>Laminates</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>mechanical stress</subject><subject>Physicochemistry of polymers</subject><subject>Polymer industry, paints, wood</subject><subject>Resonant frequency</subject><subject>Technology of polymers</subject><subject>Timoshenko beams</subject><subject>vibration</subject><issn>1359-8368</issn><issn>1879-1069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkE1P3DAQhiPUSqW0v6HuoRKXhLFjO_GxWvElIXEAjpXleMfgJbG3dpaWf493FyGOnMYzeub16KmqnxQaClSerBobp3XMfsY8NAwoa0A1QMVBdUj7TtUUpPpU3q1Qdd_K_kv1NecVAHDRssPqz1lCJE9-SGb2MZDoiPnvzTg-E7cJdjvbNffJLHFJbv0U8wOGx0gGNFMm__z8QEIM9SZ4F9NEbIo51xl3q9-qz86MGb-_1qPq7uz0dnFRX12fXy5-X9WWczrXjgJvreHY2pYbJZDLDhQwLi04iYMBhZIPZa4Youio5FYyKYVRllNp26PqeJ-7TvHvBvOsJ58tjqMJGDdZ054JwVWvWEHVHt0dmtDpdfKTSc-agt4q1Sv9TqneKtWgdFFadn-9fmOyNaNLJlif3wKY7GTP-q5wP_acM1Gb-1SYu5sSJAAoFZzLQiz2BBYrTx6TztZjsLj0qajTy-g_cM8LcBWdGw</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Huang, Yong</creator><creator>Yang, Ling-E</creator><creator>Luo, Qi-Zhi</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20130201</creationdate><title>Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section</title><author>Huang, Yong ; Yang, Ling-E ; Luo, Qi-Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-f1043ca4e3c34a95e467090246c0f6eba09e64b5e492ee57164c62665a9c416c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>Applied sciences</topic><topic>Axially functionally graded tapered beams</topic><topic>B. Vibration</topic><topic>C. Analytical modelling</topic><topic>C. Numerical analysis</topic><topic>Composites</topic><topic>Cross sections</topic><topic>equations</topic><topic>Estimating</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Functionally gradient materials</topic><topic>Laminates</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>mechanical stress</topic><topic>Physicochemistry of polymers</topic><topic>Polymer industry, paints, wood</topic><topic>Resonant frequency</topic><topic>Technology of polymers</topic><topic>Timoshenko beams</topic><topic>vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yong</creatorcontrib><creatorcontrib>Yang, Ling-E</creatorcontrib><creatorcontrib>Luo, Qi-Zhi</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Composites. Part B, Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yong</au><au>Yang, Ling-E</au><au>Luo, Qi-Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section</atitle><jtitle>Composites. Part B, Engineering</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>45</volume><issue>1</issue><spage>1493</spage><epage>1498</epage><pages>1493-1498</pages><issn>1359-8368</issn><eissn>1879-1069</eissn><abstract>This paper presents a new approach for investigating the vibration behaviors of axially functionally graded Timoshenko beams with non-uniform cross-section. By introducing an auxiliary function, we can change the coupled governing equations with variable coefficients for the deflection and rotation to a single governing equation. Moreover, all physical quantities can be expressed in terms of the solution of the resulting equation. Making use of power series for unknown function, we can transform the single equation to a system of linear algebraic equations and will get a characteristic equation in natural frequencies for different boundary conditions. An advantage of the suggested approach is that the derived characteristic equation is a polynomial equation, where the lower and higher-order natural frequencies can be determined simultaneously from the multi-roots. Several examples of estimating natural frequencies for axially grade beams and non-uniform beams are presented, which show that our method has fast convergence and obtained numerical results have high accuracy.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesb.2012.09.015</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-8368 |
ispartof | Composites. Part B, Engineering, 2013-02, Vol.45 (1), p.1493-1498 |
issn | 1359-8368 1879-1069 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825549892 |
source | Elsevier ScienceDirect Journals |
subjects | Algebra Applied sciences Axially functionally graded tapered beams B. Vibration C. Analytical modelling C. Numerical analysis Composites Cross sections equations Estimating Exact sciences and technology Forms of application and semi-finished materials Functionally gradient materials Laminates Mathematical analysis Mathematical models mechanical stress Physicochemistry of polymers Polymer industry, paints, wood Resonant frequency Technology of polymers Timoshenko beams vibration |
title | Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20vibration%20of%20axially%20functionally%20graded%20Timoshenko%20beams%20with%20non-uniform%20cross-section&rft.jtitle=Composites.%20Part%20B,%20Engineering&rft.au=Huang,%20Yong&rft.date=2013-02-01&rft.volume=45&rft.issue=1&rft.spage=1493&rft.epage=1498&rft.pages=1493-1498&rft.issn=1359-8368&rft.eissn=1879-1069&rft_id=info:doi/10.1016/j.compositesb.2012.09.015&rft_dat=%3Cproquest_cross%3E1825549892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825549892&rft_id=info:pmid/&rft_els_id=S1359836812005458&rfr_iscdi=true |