An intercomparison of Landsat land surface temperature retrieval methods under variable atmospheric conditions using in situ skin temperature
•This study validated three LST retrieval methods for Landsat 5 TM using in situ skin temperature.•The Mono-Window Algorithm provided the best results across a range of atmospheric conditions.•The Radiative Transfer Equation performed well for dates with low PWV.•High PWV decreases the effectiveness...
Gespeichert in:
Veröffentlicht in: | International Journal of Applied Earth Observation and Geoinformation 2016-09, Vol.51, p.11-27 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | |
container_start_page | 11 |
container_title | International Journal of Applied Earth Observation and Geoinformation |
container_volume | 51 |
creator | Windahl, Emily Beurs, Kirsten de |
description | •This study validated three LST retrieval methods for Landsat 5 TM using in situ skin temperature.•The Mono-Window Algorithm provided the best results across a range of atmospheric conditions.•The Radiative Transfer Equation performed well for dates with low PWV.•High PWV decreases the effectiveness of LST retrieval methods relying on PWV for transmittance.•LST retrieved using the same method under different atmospheric conditions may not be well-suited for change detection.
Land surface temperature retrieved from Landsat is a valuable resource for understanding land cover change, monitoring the urban heat island effect, and modeling hydrological and carbon cycles, among other applications. However, this dataset is underutilized, in part because it is difficult to accurately correct for atmospheric interference, and in part because it is difficult to validate the resulting LST dataset. As a result, it is often challenging to verify the accuracy of LST calculated from historical data. Currently, three correction methods are commonly used to retrieve land surface temperature from single-band Landsat TIR data—the radiative transfer equation (RTE), the mono-window algorithm (MWA), and the generalized single-channel (GSC) method. Based on current research, it is often unclear which method is best applied in different circumstances and what the actual achieved accuracy is—especially when these methods are employed as they would be for actual applications, rather than under validation conditions. This study retrieves LST from two years’ worth of clear-sky Landsat 5 TM data using all three methods, as well as LST with no atmospheric correction, and validates the results against on-the-ground skin temperature measurements from twenty-five Oklahoma Mesonet stations. Additionally, LST results using both modeled transmittance values and transmittance values based on precipitable water vapor are assessed, as are results from dates with both high and low precipitable water vapor. Results suggest that the MWA method using modeled transmittance is the most robust, with results statistically indistinguishable from Mesonet skin temperature for the complete dataset and a cloud-free subset, as well as for subsets above and below 2g/cm2 precipitable water vapor. The RTE method using modeled atmospheric parameters is also appropriate in some circumstances. |
doi_str_mv | 10.1016/j.jag.2016.04.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825549805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303243416300629</els_id><sourcerecordid>1808716222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-9c1abb5ad65da62cd6e50160dc414b02392eb21f56e62d0273264532a2ec00523</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhSMEEqXtD-DmI5cEexI7WXGqKihIK_UCUm-WY09aL4kdPM5K_Aj-c71aDpwqTvMO773R01dV7wVvBBfq46E5mMcGimx413DevqouxNBDPYB6eF20VLt66Fp4W70jOnAu-l4NF9Wfm8B8yJhsXFaTPMXA4sT2Jjgymc3lMtrSZCyyjMuKyeQtIUuYk8ejmdmC-Sk6YltwmNixdJhxRmbyEml9wuQtszE4n30MxUU-PJaPjHzeGP0s6p_aq-rNZGbC67_3svrx5fP326_1_v7u2-3NvrZdD7neWWHGURqnpDMKrFMoy3LubCe6kUO7AxxBTFKhAsehb0F1sgUDaDmX0F5WH869a4q_NqSsF08W5zIX40ZaDCBltxu4_A8rH3qhAE6t4my1KRIlnPSa_GLSby24PlHSB10o6RMlzTtdKJXMp3MGy9yjx6TJegwWnU9os3bRv5B-BlCrnX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808716222</pqid></control><display><type>article</type><title>An intercomparison of Landsat land surface temperature retrieval methods under variable atmospheric conditions using in situ skin temperature</title><source>Elsevier ScienceDirect Journals</source><creator>Windahl, Emily ; Beurs, Kirsten de</creator><creatorcontrib>Windahl, Emily ; Beurs, Kirsten de</creatorcontrib><description>•This study validated three LST retrieval methods for Landsat 5 TM using in situ skin temperature.•The Mono-Window Algorithm provided the best results across a range of atmospheric conditions.•The Radiative Transfer Equation performed well for dates with low PWV.•High PWV decreases the effectiveness of LST retrieval methods relying on PWV for transmittance.•LST retrieved using the same method under different atmospheric conditions may not be well-suited for change detection.
Land surface temperature retrieved from Landsat is a valuable resource for understanding land cover change, monitoring the urban heat island effect, and modeling hydrological and carbon cycles, among other applications. However, this dataset is underutilized, in part because it is difficult to accurately correct for atmospheric interference, and in part because it is difficult to validate the resulting LST dataset. As a result, it is often challenging to verify the accuracy of LST calculated from historical data. Currently, three correction methods are commonly used to retrieve land surface temperature from single-band Landsat TIR data—the radiative transfer equation (RTE), the mono-window algorithm (MWA), and the generalized single-channel (GSC) method. Based on current research, it is often unclear which method is best applied in different circumstances and what the actual achieved accuracy is—especially when these methods are employed as they would be for actual applications, rather than under validation conditions. This study retrieves LST from two years’ worth of clear-sky Landsat 5 TM data using all three methods, as well as LST with no atmospheric correction, and validates the results against on-the-ground skin temperature measurements from twenty-five Oklahoma Mesonet stations. Additionally, LST results using both modeled transmittance values and transmittance values based on precipitable water vapor are assessed, as are results from dates with both high and low precipitable water vapor. Results suggest that the MWA method using modeled transmittance is the most robust, with results statistically indistinguishable from Mesonet skin temperature for the complete dataset and a cloud-free subset, as well as for subsets above and below 2g/cm2 precipitable water vapor. The RTE method using modeled atmospheric parameters is also appropriate in some circumstances.</description><identifier>ISSN: 1569-8432</identifier><identifier>ISSN: 0303-2434</identifier><identifier>EISSN: 1872-826X</identifier><identifier>DOI: 10.1016/j.jag.2016.04.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Accuracy ; Algorithms ; Atmospheric correction ; Atmospherics ; Land surface temperature ; Landsat ; Mathematical models ; Precipitable water vapor ; Radiative transfer equation ; Skin temperature ; Thermal remote sensing ; Transmittance ; Water vapor</subject><ispartof>International Journal of Applied Earth Observation and Geoinformation, 2016-09, Vol.51, p.11-27</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-9c1abb5ad65da62cd6e50160dc414b02392eb21f56e62d0273264532a2ec00523</citedby><cites>FETCH-LOGICAL-c472t-9c1abb5ad65da62cd6e50160dc414b02392eb21f56e62d0273264532a2ec00523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0303243416300629$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Windahl, Emily</creatorcontrib><creatorcontrib>Beurs, Kirsten de</creatorcontrib><title>An intercomparison of Landsat land surface temperature retrieval methods under variable atmospheric conditions using in situ skin temperature</title><title>International Journal of Applied Earth Observation and Geoinformation</title><description>•This study validated three LST retrieval methods for Landsat 5 TM using in situ skin temperature.•The Mono-Window Algorithm provided the best results across a range of atmospheric conditions.•The Radiative Transfer Equation performed well for dates with low PWV.•High PWV decreases the effectiveness of LST retrieval methods relying on PWV for transmittance.•LST retrieved using the same method under different atmospheric conditions may not be well-suited for change detection.
Land surface temperature retrieved from Landsat is a valuable resource for understanding land cover change, monitoring the urban heat island effect, and modeling hydrological and carbon cycles, among other applications. However, this dataset is underutilized, in part because it is difficult to accurately correct for atmospheric interference, and in part because it is difficult to validate the resulting LST dataset. As a result, it is often challenging to verify the accuracy of LST calculated from historical data. Currently, three correction methods are commonly used to retrieve land surface temperature from single-band Landsat TIR data—the radiative transfer equation (RTE), the mono-window algorithm (MWA), and the generalized single-channel (GSC) method. Based on current research, it is often unclear which method is best applied in different circumstances and what the actual achieved accuracy is—especially when these methods are employed as they would be for actual applications, rather than under validation conditions. This study retrieves LST from two years’ worth of clear-sky Landsat 5 TM data using all three methods, as well as LST with no atmospheric correction, and validates the results against on-the-ground skin temperature measurements from twenty-five Oklahoma Mesonet stations. Additionally, LST results using both modeled transmittance values and transmittance values based on precipitable water vapor are assessed, as are results from dates with both high and low precipitable water vapor. Results suggest that the MWA method using modeled transmittance is the most robust, with results statistically indistinguishable from Mesonet skin temperature for the complete dataset and a cloud-free subset, as well as for subsets above and below 2g/cm2 precipitable water vapor. The RTE method using modeled atmospheric parameters is also appropriate in some circumstances.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Atmospheric correction</subject><subject>Atmospherics</subject><subject>Land surface temperature</subject><subject>Landsat</subject><subject>Mathematical models</subject><subject>Precipitable water vapor</subject><subject>Radiative transfer equation</subject><subject>Skin temperature</subject><subject>Thermal remote sensing</subject><subject>Transmittance</subject><subject>Water vapor</subject><issn>1569-8432</issn><issn>0303-2434</issn><issn>1872-826X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv1DAQhSMEEqXtD-DmI5cEexI7WXGqKihIK_UCUm-WY09aL4kdPM5K_Aj-c71aDpwqTvMO773R01dV7wVvBBfq46E5mMcGimx413DevqouxNBDPYB6eF20VLt66Fp4W70jOnAu-l4NF9Wfm8B8yJhsXFaTPMXA4sT2Jjgymc3lMtrSZCyyjMuKyeQtIUuYk8ejmdmC-Sk6YltwmNixdJhxRmbyEml9wuQtszE4n30MxUU-PJaPjHzeGP0s6p_aq-rNZGbC67_3svrx5fP326_1_v7u2-3NvrZdD7neWWHGURqnpDMKrFMoy3LubCe6kUO7AxxBTFKhAsehb0F1sgUDaDmX0F5WH869a4q_NqSsF08W5zIX40ZaDCBltxu4_A8rH3qhAE6t4my1KRIlnPSa_GLSby24PlHSB10o6RMlzTtdKJXMp3MGy9yjx6TJegwWnU9os3bRv5B-BlCrnX8</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Windahl, Emily</creator><creator>Beurs, Kirsten de</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201609</creationdate><title>An intercomparison of Landsat land surface temperature retrieval methods under variable atmospheric conditions using in situ skin temperature</title><author>Windahl, Emily ; Beurs, Kirsten de</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-9c1abb5ad65da62cd6e50160dc414b02392eb21f56e62d0273264532a2ec00523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Atmospheric correction</topic><topic>Atmospherics</topic><topic>Land surface temperature</topic><topic>Landsat</topic><topic>Mathematical models</topic><topic>Precipitable water vapor</topic><topic>Radiative transfer equation</topic><topic>Skin temperature</topic><topic>Thermal remote sensing</topic><topic>Transmittance</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Windahl, Emily</creatorcontrib><creatorcontrib>Beurs, Kirsten de</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International Journal of Applied Earth Observation and Geoinformation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Windahl, Emily</au><au>Beurs, Kirsten de</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An intercomparison of Landsat land surface temperature retrieval methods under variable atmospheric conditions using in situ skin temperature</atitle><jtitle>International Journal of Applied Earth Observation and Geoinformation</jtitle><date>2016-09</date><risdate>2016</risdate><volume>51</volume><spage>11</spage><epage>27</epage><pages>11-27</pages><issn>1569-8432</issn><issn>0303-2434</issn><eissn>1872-826X</eissn><abstract>•This study validated three LST retrieval methods for Landsat 5 TM using in situ skin temperature.•The Mono-Window Algorithm provided the best results across a range of atmospheric conditions.•The Radiative Transfer Equation performed well for dates with low PWV.•High PWV decreases the effectiveness of LST retrieval methods relying on PWV for transmittance.•LST retrieved using the same method under different atmospheric conditions may not be well-suited for change detection.
Land surface temperature retrieved from Landsat is a valuable resource for understanding land cover change, monitoring the urban heat island effect, and modeling hydrological and carbon cycles, among other applications. However, this dataset is underutilized, in part because it is difficult to accurately correct for atmospheric interference, and in part because it is difficult to validate the resulting LST dataset. As a result, it is often challenging to verify the accuracy of LST calculated from historical data. Currently, three correction methods are commonly used to retrieve land surface temperature from single-band Landsat TIR data—the radiative transfer equation (RTE), the mono-window algorithm (MWA), and the generalized single-channel (GSC) method. Based on current research, it is often unclear which method is best applied in different circumstances and what the actual achieved accuracy is—especially when these methods are employed as they would be for actual applications, rather than under validation conditions. This study retrieves LST from two years’ worth of clear-sky Landsat 5 TM data using all three methods, as well as LST with no atmospheric correction, and validates the results against on-the-ground skin temperature measurements from twenty-five Oklahoma Mesonet stations. Additionally, LST results using both modeled transmittance values and transmittance values based on precipitable water vapor are assessed, as are results from dates with both high and low precipitable water vapor. Results suggest that the MWA method using modeled transmittance is the most robust, with results statistically indistinguishable from Mesonet skin temperature for the complete dataset and a cloud-free subset, as well as for subsets above and below 2g/cm2 precipitable water vapor. The RTE method using modeled atmospheric parameters is also appropriate in some circumstances.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jag.2016.04.003</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-8432 |
ispartof | International Journal of Applied Earth Observation and Geoinformation, 2016-09, Vol.51, p.11-27 |
issn | 1569-8432 0303-2434 1872-826X |
language | eng |
recordid | cdi_proquest_miscellaneous_1825549805 |
source | Elsevier ScienceDirect Journals |
subjects | Accuracy Algorithms Atmospheric correction Atmospherics Land surface temperature Landsat Mathematical models Precipitable water vapor Radiative transfer equation Skin temperature Thermal remote sensing Transmittance Water vapor |
title | An intercomparison of Landsat land surface temperature retrieval methods under variable atmospheric conditions using in situ skin temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20intercomparison%20of%20Landsat%20land%20surface%20temperature%20retrieval%20methods%20under%20variable%20atmospheric%20conditions%20using%20in%20situ%20skin%20temperature&rft.jtitle=International%20Journal%20of%20Applied%20Earth%20Observation%20and%20Geoinformation&rft.au=Windahl,%20Emily&rft.date=2016-09&rft.volume=51&rft.spage=11&rft.epage=27&rft.pages=11-27&rft.issn=1569-8432&rft.eissn=1872-826X&rft_id=info:doi/10.1016/j.jag.2016.04.003&rft_dat=%3Cproquest_cross%3E1808716222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808716222&rft_id=info:pmid/&rft_els_id=S0303243416300629&rfr_iscdi=true |