Relaxed hover solutions for multicopters: Application to algorithmic redundancy and novel vehicles

This paper presents a relaxed definition of hover for multicopters with propellers pointing in a common direction. These solutions are found by requiring that the multicopter remain substantially in one position, and that the solutions be constant when expressed in a coordinate system attached to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of robotics research 2016-07, Vol.35 (8), p.873-889
Hauptverfasser: Mueller, Mark W., D’Andrea, Raffaello
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 889
container_issue 8
container_start_page 873
container_title The International journal of robotics research
container_volume 35
creator Mueller, Mark W.
D’Andrea, Raffaello
description This paper presents a relaxed definition of hover for multicopters with propellers pointing in a common direction. These solutions are found by requiring that the multicopter remain substantially in one position, and that the solutions be constant when expressed in a coordinate system attached to the vehicle. The vehicle’s angular velocity is then shown to be either zero or parallel to gravity. The controllability of a vehicle’s attitude about these solutions is then investigated. These relaxed hover solutions may be applied as an algorithmic failsafe, allowing, for example, a quadrocopter to fly despite the complete loss of one, two, or three of its propellers. Experimental results validate the quadrocopter failsafe for two types of failure (a single propeller and two opposing propellers failing), and a nonlinear simulation validates the remaining two types of failure (two adjacent and three propellers failing). The relaxed hover solutions are also shown to allow a multicopter to maintain flight in spite of extreme center of mass offsets. Finally, the design and experimental validation of three novel vehicles is presented.
doi_str_mv 10.1177/0278364915596233
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825549801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364915596233</sage_id><sourcerecordid>1825549801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-11a9c9e5aabac54bceb92c3ccfe1fc3bb7a6032401bacb01c79ebadf9b2ee5eb3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7uXQbcuKnmNn3F3TD4ggFBdF2S9HYmQ9rUpB2cf2_LuJABV3fxfedwOYRcA7sDyPN7FucFzxIBaSqymPMTMoM8gYhDnp2S2YSjiZ-TixC2jDGeMTEj6h2t_MaKbtwOPQ3ODr1xbaC187QZbG-063r04YEuus4aLSdMe0elXTtv-k1jNPVYDW0lW72nsq1oO3ZZusON0RbDJTmrpQ149Xvn5PPp8WP5Eq3enl-Xi1WkE1b0EYAUWmAqpZI6TZRGJWLNta4Ras2VymXGeJwwGLlioHOBSla1UDFiiorPye2ht_Pua8DQl40JGq2VLbohlFDEaZqIgsGo3hypWzf4dvyuBAFZIQrgbLTYwdLeheCxLjtvGun3JbByGr08Hn2MRIdIkGv8U_qf_wO8VoRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916898130</pqid></control><display><type>article</type><title>Relaxed hover solutions for multicopters: Application to algorithmic redundancy and novel vehicles</title><source>SAGE Complete</source><creator>Mueller, Mark W. ; D’Andrea, Raffaello</creator><creatorcontrib>Mueller, Mark W. ; D’Andrea, Raffaello</creatorcontrib><description>This paper presents a relaxed definition of hover for multicopters with propellers pointing in a common direction. These solutions are found by requiring that the multicopter remain substantially in one position, and that the solutions be constant when expressed in a coordinate system attached to the vehicle. The vehicle’s angular velocity is then shown to be either zero or parallel to gravity. The controllability of a vehicle’s attitude about these solutions is then investigated. These relaxed hover solutions may be applied as an algorithmic failsafe, allowing, for example, a quadrocopter to fly despite the complete loss of one, two, or three of its propellers. Experimental results validate the quadrocopter failsafe for two types of failure (a single propeller and two opposing propellers failing), and a nonlinear simulation validates the remaining two types of failure (two adjacent and three propellers failing). The relaxed hover solutions are also shown to allow a multicopter to maintain flight in spite of extreme center of mass offsets. Finally, the design and experimental validation of three novel vehicles is presented.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364915596233</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aerodynamics ; Algorithms ; Angular velocity ; Center of mass ; Computer simulation ; Constants ; Controllability ; Design engineering ; Failure ; Gravitation ; Offsets ; Propellers ; Redundancy ; Vehicles</subject><ispartof>The International journal of robotics research, 2016-07, Vol.35 (8), p.873-889</ispartof><rights>The Author(s) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-11a9c9e5aabac54bceb92c3ccfe1fc3bb7a6032401bacb01c79ebadf9b2ee5eb3</citedby><cites>FETCH-LOGICAL-c408t-11a9c9e5aabac54bceb92c3ccfe1fc3bb7a6032401bacb01c79ebadf9b2ee5eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0278364915596233$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0278364915596233$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Mueller, Mark W.</creatorcontrib><creatorcontrib>D’Andrea, Raffaello</creatorcontrib><title>Relaxed hover solutions for multicopters: Application to algorithmic redundancy and novel vehicles</title><title>The International journal of robotics research</title><description>This paper presents a relaxed definition of hover for multicopters with propellers pointing in a common direction. These solutions are found by requiring that the multicopter remain substantially in one position, and that the solutions be constant when expressed in a coordinate system attached to the vehicle. The vehicle’s angular velocity is then shown to be either zero or parallel to gravity. The controllability of a vehicle’s attitude about these solutions is then investigated. These relaxed hover solutions may be applied as an algorithmic failsafe, allowing, for example, a quadrocopter to fly despite the complete loss of one, two, or three of its propellers. Experimental results validate the quadrocopter failsafe for two types of failure (a single propeller and two opposing propellers failing), and a nonlinear simulation validates the remaining two types of failure (two adjacent and three propellers failing). The relaxed hover solutions are also shown to allow a multicopter to maintain flight in spite of extreme center of mass offsets. Finally, the design and experimental validation of three novel vehicles is presented.</description><subject>Aerodynamics</subject><subject>Algorithms</subject><subject>Angular velocity</subject><subject>Center of mass</subject><subject>Computer simulation</subject><subject>Constants</subject><subject>Controllability</subject><subject>Design engineering</subject><subject>Failure</subject><subject>Gravitation</subject><subject>Offsets</subject><subject>Propellers</subject><subject>Redundancy</subject><subject>Vehicles</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7uXQbcuKnmNn3F3TD4ggFBdF2S9HYmQ9rUpB2cf2_LuJABV3fxfedwOYRcA7sDyPN7FucFzxIBaSqymPMTMoM8gYhDnp2S2YSjiZ-TixC2jDGeMTEj6h2t_MaKbtwOPQ3ODr1xbaC187QZbG-063r04YEuus4aLSdMe0elXTtv-k1jNPVYDW0lW72nsq1oO3ZZusON0RbDJTmrpQ149Xvn5PPp8WP5Eq3enl-Xi1WkE1b0EYAUWmAqpZI6TZRGJWLNta4Ras2VymXGeJwwGLlioHOBSla1UDFiiorPye2ht_Pua8DQl40JGq2VLbohlFDEaZqIgsGo3hypWzf4dvyuBAFZIQrgbLTYwdLeheCxLjtvGun3JbByGr08Hn2MRIdIkGv8U_qf_wO8VoRQ</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Mueller, Mark W.</creator><creator>D’Andrea, Raffaello</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20160701</creationdate><title>Relaxed hover solutions for multicopters: Application to algorithmic redundancy and novel vehicles</title><author>Mueller, Mark W. ; D’Andrea, Raffaello</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-11a9c9e5aabac54bceb92c3ccfe1fc3bb7a6032401bacb01c79ebadf9b2ee5eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aerodynamics</topic><topic>Algorithms</topic><topic>Angular velocity</topic><topic>Center of mass</topic><topic>Computer simulation</topic><topic>Constants</topic><topic>Controllability</topic><topic>Design engineering</topic><topic>Failure</topic><topic>Gravitation</topic><topic>Offsets</topic><topic>Propellers</topic><topic>Redundancy</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mueller, Mark W.</creatorcontrib><creatorcontrib>D’Andrea, Raffaello</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mueller, Mark W.</au><au>D’Andrea, Raffaello</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relaxed hover solutions for multicopters: Application to algorithmic redundancy and novel vehicles</atitle><jtitle>The International journal of robotics research</jtitle><date>2016-07-01</date><risdate>2016</risdate><volume>35</volume><issue>8</issue><spage>873</spage><epage>889</epage><pages>873-889</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>This paper presents a relaxed definition of hover for multicopters with propellers pointing in a common direction. These solutions are found by requiring that the multicopter remain substantially in one position, and that the solutions be constant when expressed in a coordinate system attached to the vehicle. The vehicle’s angular velocity is then shown to be either zero or parallel to gravity. The controllability of a vehicle’s attitude about these solutions is then investigated. These relaxed hover solutions may be applied as an algorithmic failsafe, allowing, for example, a quadrocopter to fly despite the complete loss of one, two, or three of its propellers. Experimental results validate the quadrocopter failsafe for two types of failure (a single propeller and two opposing propellers failing), and a nonlinear simulation validates the remaining two types of failure (two adjacent and three propellers failing). The relaxed hover solutions are also shown to allow a multicopter to maintain flight in spite of extreme center of mass offsets. Finally, the design and experimental validation of three novel vehicles is presented.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0278364915596233</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-3649
ispartof The International journal of robotics research, 2016-07, Vol.35 (8), p.873-889
issn 0278-3649
1741-3176
language eng
recordid cdi_proquest_miscellaneous_1825549801
source SAGE Complete
subjects Aerodynamics
Algorithms
Angular velocity
Center of mass
Computer simulation
Constants
Controllability
Design engineering
Failure
Gravitation
Offsets
Propellers
Redundancy
Vehicles
title Relaxed hover solutions for multicopters: Application to algorithmic redundancy and novel vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relaxed%20hover%20solutions%20for%20multicopters:%20Application%20to%20algorithmic%20redundancy%20and%20novel%20vehicles&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Mueller,%20Mark%20W.&rft.date=2016-07-01&rft.volume=35&rft.issue=8&rft.spage=873&rft.epage=889&rft.pages=873-889&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/0278364915596233&rft_dat=%3Cproquest_cross%3E1825549801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1916898130&rft_id=info:pmid/&rft_sage_id=10.1177_0278364915596233&rfr_iscdi=true