Lyapunov Stability of Noncommensurate Fractional Order Systems: An Energy Balance Approach
Lyapunov stability of linear noncommensurate order fractional systems is treated in this paper. The proposed methodology is based on the concept of fractional energy stored in inductor and capacitor components, where natural decrease of the stored energy is caused by internal Joule losses. The Lyapu...
Gespeichert in:
Veröffentlicht in: | Journal of computational and nonlinear dynamics 2016-07, Vol.11 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Journal of computational and nonlinear dynamics |
container_volume | 11 |
creator | Trigeassou, Jean-Claude Maamri, Nezha Oustaloup, Alain |
description | Lyapunov stability of linear noncommensurate order fractional systems is treated in this paper. The proposed methodology is based on the concept of fractional energy stored in inductor and capacitor components, where natural decrease of the stored energy is caused by internal Joule losses. The Lyapunov function is expressed as the sum of the different reversible fractional energies, whereas its derivative is interpreted in terms of internal and external Joule losses. Stability conditions are derived from the energy balance principle, adapted to the fractional case. Examples are taken from electrical systems, but this methodology applies also directly to mechanical and electromechanical systems. |
doi_str_mv | 10.1115/1.4031841 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825549373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825549373</sourcerecordid><originalsourceid>FETCH-LOGICAL-a282t-6f9e3d561cceaa29536c79c9b25715809d28f07218867d4aba946f154a83bf8d3</originalsourceid><addsrcrecordid>eNo9kDFPwzAQRi0EEqUwMLN4hCElF9uxw1aqFpAqOhQWFuvqOJAqiYOdIOXfE9SK6W54-r67R8g1xDMAEPcw4zEDxeGETEAIEQFP2On_DuKcXISwj2POMyUm5GM9YNs37oduO9yVVdkN1BX01TXG1bVtQu-xs3Tl0XSla7CiG59bT7dD6GwdHui8ocvG-s-BPmKFjbF03rbeofm6JGcFVsFeHeeUvK-Wb4vnaL15elnM1xEmKumitMgsy0UKxljEJBMsNTIz2S4REoSKszxRRSwTUCqVOccdZjwtQHBUbFeonE3J7SF3rP3ubeh0XQZjq_Ea6_qgQSVC8IxJNqJ3B9R4F4K3hW59WaMfNMT6z58GffQ3sjcHFkNt9d71fvw-aC4lcMl-AQiPauo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825549373</pqid></control><display><type>article</type><title>Lyapunov Stability of Noncommensurate Fractional Order Systems: An Energy Balance Approach</title><source>ASME Transactions Journals</source><source>Alma/SFX Local Collection</source><creator>Trigeassou, Jean-Claude ; Maamri, Nezha ; Oustaloup, Alain</creator><creatorcontrib>Trigeassou, Jean-Claude ; Maamri, Nezha ; Oustaloup, Alain</creatorcontrib><description>Lyapunov stability of linear noncommensurate order fractional systems is treated in this paper. The proposed methodology is based on the concept of fractional energy stored in inductor and capacitor components, where natural decrease of the stored energy is caused by internal Joule losses. The Lyapunov function is expressed as the sum of the different reversible fractional energies, whereas its derivative is interpreted in terms of internal and external Joule losses. Stability conditions are derived from the energy balance principle, adapted to the fractional case. Examples are taken from electrical systems, but this methodology applies also directly to mechanical and electromechanical systems.</description><identifier>ISSN: 1555-1415</identifier><identifier>EISSN: 1555-1423</identifier><identifier>DOI: 10.1115/1.4031841</identifier><language>eng</language><publisher>ASME</publisher><subject>Capacitors ; Derivatives ; Dynamical systems ; Internal energy ; Lyapunov functions ; Methodology ; Nonlinear dynamics ; Stability</subject><ispartof>Journal of computational and nonlinear dynamics, 2016-07, Vol.11 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a282t-6f9e3d561cceaa29536c79c9b25715809d28f07218867d4aba946f154a83bf8d3</citedby><cites>FETCH-LOGICAL-a282t-6f9e3d561cceaa29536c79c9b25715809d28f07218867d4aba946f154a83bf8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,38499</link.rule.ids></links><search><creatorcontrib>Trigeassou, Jean-Claude</creatorcontrib><creatorcontrib>Maamri, Nezha</creatorcontrib><creatorcontrib>Oustaloup, Alain</creatorcontrib><title>Lyapunov Stability of Noncommensurate Fractional Order Systems: An Energy Balance Approach</title><title>Journal of computational and nonlinear dynamics</title><addtitle>J. Comput. Nonlinear Dynam</addtitle><description>Lyapunov stability of linear noncommensurate order fractional systems is treated in this paper. The proposed methodology is based on the concept of fractional energy stored in inductor and capacitor components, where natural decrease of the stored energy is caused by internal Joule losses. The Lyapunov function is expressed as the sum of the different reversible fractional energies, whereas its derivative is interpreted in terms of internal and external Joule losses. Stability conditions are derived from the energy balance principle, adapted to the fractional case. Examples are taken from electrical systems, but this methodology applies also directly to mechanical and electromechanical systems.</description><subject>Capacitors</subject><subject>Derivatives</subject><subject>Dynamical systems</subject><subject>Internal energy</subject><subject>Lyapunov functions</subject><subject>Methodology</subject><subject>Nonlinear dynamics</subject><subject>Stability</subject><issn>1555-1415</issn><issn>1555-1423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQRi0EEqUwMLN4hCElF9uxw1aqFpAqOhQWFuvqOJAqiYOdIOXfE9SK6W54-r67R8g1xDMAEPcw4zEDxeGETEAIEQFP2On_DuKcXISwj2POMyUm5GM9YNs37oduO9yVVdkN1BX01TXG1bVtQu-xs3Tl0XSla7CiG59bT7dD6GwdHui8ocvG-s-BPmKFjbF03rbeofm6JGcFVsFeHeeUvK-Wb4vnaL15elnM1xEmKumitMgsy0UKxljEJBMsNTIz2S4REoSKszxRRSwTUCqVOccdZjwtQHBUbFeonE3J7SF3rP3ubeh0XQZjq_Ea6_qgQSVC8IxJNqJ3B9R4F4K3hW59WaMfNMT6z58GffQ3sjcHFkNt9d71fvw-aC4lcMl-AQiPauo</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Trigeassou, Jean-Claude</creator><creator>Maamri, Nezha</creator><creator>Oustaloup, Alain</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160701</creationdate><title>Lyapunov Stability of Noncommensurate Fractional Order Systems: An Energy Balance Approach</title><author>Trigeassou, Jean-Claude ; Maamri, Nezha ; Oustaloup, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a282t-6f9e3d561cceaa29536c79c9b25715809d28f07218867d4aba946f154a83bf8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Capacitors</topic><topic>Derivatives</topic><topic>Dynamical systems</topic><topic>Internal energy</topic><topic>Lyapunov functions</topic><topic>Methodology</topic><topic>Nonlinear dynamics</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trigeassou, Jean-Claude</creatorcontrib><creatorcontrib>Maamri, Nezha</creatorcontrib><creatorcontrib>Oustaloup, Alain</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trigeassou, Jean-Claude</au><au>Maamri, Nezha</au><au>Oustaloup, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lyapunov Stability of Noncommensurate Fractional Order Systems: An Energy Balance Approach</atitle><jtitle>Journal of computational and nonlinear dynamics</jtitle><stitle>J. Comput. Nonlinear Dynam</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>11</volume><issue>4</issue><issn>1555-1415</issn><eissn>1555-1423</eissn><abstract>Lyapunov stability of linear noncommensurate order fractional systems is treated in this paper. The proposed methodology is based on the concept of fractional energy stored in inductor and capacitor components, where natural decrease of the stored energy is caused by internal Joule losses. The Lyapunov function is expressed as the sum of the different reversible fractional energies, whereas its derivative is interpreted in terms of internal and external Joule losses. Stability conditions are derived from the energy balance principle, adapted to the fractional case. Examples are taken from electrical systems, but this methodology applies also directly to mechanical and electromechanical systems.</abstract><pub>ASME</pub><doi>10.1115/1.4031841</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1555-1415 |
ispartof | Journal of computational and nonlinear dynamics, 2016-07, Vol.11 (4) |
issn | 1555-1415 1555-1423 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825549373 |
source | ASME Transactions Journals; Alma/SFX Local Collection |
subjects | Capacitors Derivatives Dynamical systems Internal energy Lyapunov functions Methodology Nonlinear dynamics Stability |
title | Lyapunov Stability of Noncommensurate Fractional Order Systems: An Energy Balance Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lyapunov%20Stability%20of%20Noncommensurate%20Fractional%20Order%20Systems:%20An%20Energy%20Balance%20Approach&rft.jtitle=Journal%20of%20computational%20and%20nonlinear%20dynamics&rft.au=Trigeassou,%20Jean-Claude&rft.date=2016-07-01&rft.volume=11&rft.issue=4&rft.issn=1555-1415&rft.eissn=1555-1423&rft_id=info:doi/10.1115/1.4031841&rft_dat=%3Cproquest_cross%3E1825549373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825549373&rft_id=info:pmid/&rfr_iscdi=true |