Lyapunov Stability of Noncommensurate Fractional Order Systems: An Energy Balance Approach

Lyapunov stability of linear noncommensurate order fractional systems is treated in this paper. The proposed methodology is based on the concept of fractional energy stored in inductor and capacitor components, where natural decrease of the stored energy is caused by internal Joule losses. The Lyapu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and nonlinear dynamics 2016-07, Vol.11 (4)
Hauptverfasser: Trigeassou, Jean-Claude, Maamri, Nezha, Oustaloup, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of computational and nonlinear dynamics
container_volume 11
creator Trigeassou, Jean-Claude
Maamri, Nezha
Oustaloup, Alain
description Lyapunov stability of linear noncommensurate order fractional systems is treated in this paper. The proposed methodology is based on the concept of fractional energy stored in inductor and capacitor components, where natural decrease of the stored energy is caused by internal Joule losses. The Lyapunov function is expressed as the sum of the different reversible fractional energies, whereas its derivative is interpreted in terms of internal and external Joule losses. Stability conditions are derived from the energy balance principle, adapted to the fractional case. Examples are taken from electrical systems, but this methodology applies also directly to mechanical and electromechanical systems.
doi_str_mv 10.1115/1.4031841
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825549373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825549373</sourcerecordid><originalsourceid>FETCH-LOGICAL-a282t-6f9e3d561cceaa29536c79c9b25715809d28f07218867d4aba946f154a83bf8d3</originalsourceid><addsrcrecordid>eNo9kDFPwzAQRi0EEqUwMLN4hCElF9uxw1aqFpAqOhQWFuvqOJAqiYOdIOXfE9SK6W54-r67R8g1xDMAEPcw4zEDxeGETEAIEQFP2On_DuKcXISwj2POMyUm5GM9YNs37oduO9yVVdkN1BX01TXG1bVtQu-xs3Tl0XSla7CiG59bT7dD6GwdHui8ocvG-s-BPmKFjbF03rbeofm6JGcFVsFeHeeUvK-Wb4vnaL15elnM1xEmKumitMgsy0UKxljEJBMsNTIz2S4REoSKszxRRSwTUCqVOccdZjwtQHBUbFeonE3J7SF3rP3ubeh0XQZjq_Ea6_qgQSVC8IxJNqJ3B9R4F4K3hW59WaMfNMT6z58GffQ3sjcHFkNt9d71fvw-aC4lcMl-AQiPauo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825549373</pqid></control><display><type>article</type><title>Lyapunov Stability of Noncommensurate Fractional Order Systems: An Energy Balance Approach</title><source>ASME Transactions Journals</source><source>Alma/SFX Local Collection</source><creator>Trigeassou, Jean-Claude ; Maamri, Nezha ; Oustaloup, Alain</creator><creatorcontrib>Trigeassou, Jean-Claude ; Maamri, Nezha ; Oustaloup, Alain</creatorcontrib><description>Lyapunov stability of linear noncommensurate order fractional systems is treated in this paper. The proposed methodology is based on the concept of fractional energy stored in inductor and capacitor components, where natural decrease of the stored energy is caused by internal Joule losses. The Lyapunov function is expressed as the sum of the different reversible fractional energies, whereas its derivative is interpreted in terms of internal and external Joule losses. Stability conditions are derived from the energy balance principle, adapted to the fractional case. Examples are taken from electrical systems, but this methodology applies also directly to mechanical and electromechanical systems.</description><identifier>ISSN: 1555-1415</identifier><identifier>EISSN: 1555-1423</identifier><identifier>DOI: 10.1115/1.4031841</identifier><language>eng</language><publisher>ASME</publisher><subject>Capacitors ; Derivatives ; Dynamical systems ; Internal energy ; Lyapunov functions ; Methodology ; Nonlinear dynamics ; Stability</subject><ispartof>Journal of computational and nonlinear dynamics, 2016-07, Vol.11 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a282t-6f9e3d561cceaa29536c79c9b25715809d28f07218867d4aba946f154a83bf8d3</citedby><cites>FETCH-LOGICAL-a282t-6f9e3d561cceaa29536c79c9b25715809d28f07218867d4aba946f154a83bf8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,38499</link.rule.ids></links><search><creatorcontrib>Trigeassou, Jean-Claude</creatorcontrib><creatorcontrib>Maamri, Nezha</creatorcontrib><creatorcontrib>Oustaloup, Alain</creatorcontrib><title>Lyapunov Stability of Noncommensurate Fractional Order Systems: An Energy Balance Approach</title><title>Journal of computational and nonlinear dynamics</title><addtitle>J. Comput. Nonlinear Dynam</addtitle><description>Lyapunov stability of linear noncommensurate order fractional systems is treated in this paper. The proposed methodology is based on the concept of fractional energy stored in inductor and capacitor components, where natural decrease of the stored energy is caused by internal Joule losses. The Lyapunov function is expressed as the sum of the different reversible fractional energies, whereas its derivative is interpreted in terms of internal and external Joule losses. Stability conditions are derived from the energy balance principle, adapted to the fractional case. Examples are taken from electrical systems, but this methodology applies also directly to mechanical and electromechanical systems.</description><subject>Capacitors</subject><subject>Derivatives</subject><subject>Dynamical systems</subject><subject>Internal energy</subject><subject>Lyapunov functions</subject><subject>Methodology</subject><subject>Nonlinear dynamics</subject><subject>Stability</subject><issn>1555-1415</issn><issn>1555-1423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQRi0EEqUwMLN4hCElF9uxw1aqFpAqOhQWFuvqOJAqiYOdIOXfE9SK6W54-r67R8g1xDMAEPcw4zEDxeGETEAIEQFP2On_DuKcXISwj2POMyUm5GM9YNs37oduO9yVVdkN1BX01TXG1bVtQu-xs3Tl0XSla7CiG59bT7dD6GwdHui8ocvG-s-BPmKFjbF03rbeofm6JGcFVsFeHeeUvK-Wb4vnaL15elnM1xEmKumitMgsy0UKxljEJBMsNTIz2S4REoSKszxRRSwTUCqVOccdZjwtQHBUbFeonE3J7SF3rP3ubeh0XQZjq_Ea6_qgQSVC8IxJNqJ3B9R4F4K3hW59WaMfNMT6z58GffQ3sjcHFkNt9d71fvw-aC4lcMl-AQiPauo</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Trigeassou, Jean-Claude</creator><creator>Maamri, Nezha</creator><creator>Oustaloup, Alain</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160701</creationdate><title>Lyapunov Stability of Noncommensurate Fractional Order Systems: An Energy Balance Approach</title><author>Trigeassou, Jean-Claude ; Maamri, Nezha ; Oustaloup, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a282t-6f9e3d561cceaa29536c79c9b25715809d28f07218867d4aba946f154a83bf8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Capacitors</topic><topic>Derivatives</topic><topic>Dynamical systems</topic><topic>Internal energy</topic><topic>Lyapunov functions</topic><topic>Methodology</topic><topic>Nonlinear dynamics</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trigeassou, Jean-Claude</creatorcontrib><creatorcontrib>Maamri, Nezha</creatorcontrib><creatorcontrib>Oustaloup, Alain</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trigeassou, Jean-Claude</au><au>Maamri, Nezha</au><au>Oustaloup, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lyapunov Stability of Noncommensurate Fractional Order Systems: An Energy Balance Approach</atitle><jtitle>Journal of computational and nonlinear dynamics</jtitle><stitle>J. Comput. Nonlinear Dynam</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>11</volume><issue>4</issue><issn>1555-1415</issn><eissn>1555-1423</eissn><abstract>Lyapunov stability of linear noncommensurate order fractional systems is treated in this paper. The proposed methodology is based on the concept of fractional energy stored in inductor and capacitor components, where natural decrease of the stored energy is caused by internal Joule losses. The Lyapunov function is expressed as the sum of the different reversible fractional energies, whereas its derivative is interpreted in terms of internal and external Joule losses. Stability conditions are derived from the energy balance principle, adapted to the fractional case. Examples are taken from electrical systems, but this methodology applies also directly to mechanical and electromechanical systems.</abstract><pub>ASME</pub><doi>10.1115/1.4031841</doi></addata></record>
fulltext fulltext
identifier ISSN: 1555-1415
ispartof Journal of computational and nonlinear dynamics, 2016-07, Vol.11 (4)
issn 1555-1415
1555-1423
language eng
recordid cdi_proquest_miscellaneous_1825549373
source ASME Transactions Journals; Alma/SFX Local Collection
subjects Capacitors
Derivatives
Dynamical systems
Internal energy
Lyapunov functions
Methodology
Nonlinear dynamics
Stability
title Lyapunov Stability of Noncommensurate Fractional Order Systems: An Energy Balance Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lyapunov%20Stability%20of%20Noncommensurate%20Fractional%20Order%20Systems:%20An%20Energy%20Balance%20Approach&rft.jtitle=Journal%20of%20computational%20and%20nonlinear%20dynamics&rft.au=Trigeassou,%20Jean-Claude&rft.date=2016-07-01&rft.volume=11&rft.issue=4&rft.issn=1555-1415&rft.eissn=1555-1423&rft_id=info:doi/10.1115/1.4031841&rft_dat=%3Cproquest_cross%3E1825549373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825549373&rft_id=info:pmid/&rfr_iscdi=true