Control design for a two-bladed downwind teeterless damped free-yaw wind turbine

In this paper, a control architecture for a two-bladed downwind teeterless damped free-yaw wind turbine is developed. The wind turbine features a physical yaw damper which provides damping to the yawing motion of the rotor-nacelle assembly. Individual Pitch Control (IPC)11List of abbreviations: Indi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechatronics (Oxford) 2016-06, Vol.36, p.77-96
Hauptverfasser: van Solingen, E., Beerens, J., Mulders, S.P., De Breuker, R., van Wingerden, J.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 96
container_issue
container_start_page 77
container_title Mechatronics (Oxford)
container_volume 36
creator van Solingen, E.
Beerens, J.
Mulders, S.P.
De Breuker, R.
van Wingerden, J.W.
description In this paper, a control architecture for a two-bladed downwind teeterless damped free-yaw wind turbine is developed. The wind turbine features a physical yaw damper which provides damping to the yawing motion of the rotor-nacelle assembly. Individual Pitch Control (IPC)11List of abbreviations: Individual Pitch Control (IPC); Collective Pitch Control (CPC); Linear Individual Pitch Control (LIPC); Multi-Blade Coordinate (MBC); Multi-Blade Coordinate (MBC); Out-of-Plane (OoP); In-Plane (IP); Variance Accounted For (VAF); Damage Equivalent Load (DEL); Extreme Direction Change (EDC); Proportional Integral (PI).List of symbols:  Ttrq: Demanded generator torque for speed regulation;  Tdtd: Demanded generator torque for drivetrain damping;  Tgen: Demanded generator torque;  Ωrated: Rated generator speed setpoint;  Ωgen: Generator speed control setpoint;  θcol: Collective blade pitch angle;  θcol: Collective blade pitch angle;  θ1: Individual blade 1 pitch angle;  θ2: Individual blade 2 pitch angle;  Θ1: Blade 1 pitch angle;  Θ2: Blade 2 pitch angle;  θtilt: Non-rotating blade pitch setpoint for tilt coordinate;  θyaw: Non-rotating blade pitch setpoint for yaw coordinate;  My, 1: Blade 1 Out-of-Plane root bending moment;  My, 2: Blade 2 Out-of-Plane root bending moment;  Mx, 1: Blade 1 In-Plane root bending moment;  Mx, 2: Blade 2 In-Plane root bending moment;  Mtilt: Rotor tilt moment;  Myaw: Rotor yaw moment;  ψ: Rotor azimuth angle;  ψoff: Azimuth angle offset;  ϕref: Yaw setpoint angle;  ϕ˙yb: Yaw bearing angular velocity;  n: n’th harmonic of load;  ϕyaw: Yaw misalignment (between turbine yaw position and wind direction);  ϕ: Yaw error (controller input);  Lθ: Low-pass filter for individual pitch angles;  Lϕ: Low-pass filter for yaw misalignment signal;  HIPC: High-pass filter for individual blade pitch signals;  Lyb: Low-pass filter for yaw bearing angular velocity signal;  fIPC: Cut-off frequency of high-pass filter for individual pitch control  κ: Gain of yaw model;  τ: Time constant of yaw model;  Td: Time delay in yaw model. is employed to obtain yaw control so as to actively track the wind direction and to reduce the turbine loads. The objectives of both load and yaw control by IPC are conflicting and therefore two decoupling strategies are presented and compared in terms of controller design, stability, and turbine loads. The design of the different controllers and the physical yaw damping are coupled and have a large impact on the turbine loads. It is
doi_str_mv 10.1016/j.mechatronics.2016.03.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825548717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957415816300083</els_id><sourcerecordid>1825548717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-2b08c59717e9c08bcd4cb0c633d5abf62a29b03925d8524b57c9b52b3a0fd2f93</originalsourceid><addsrcrecordid>eNqNkDtPwzAQxy0EEqXwHSImloSzHTcOGypPqRIMMFt-XMBVGhc7Jeq3J1UYGJlOuv_jdD9CLikUFOjiel1s0H7qPobO21SwcVcALwDkEZlRWfG8BFgckxnUospLKuQpOUtpDUArSqsZeV2Gbky3mcPkP7qsCTHTWT-E3LTaoctcGLrBdy7rEXuMLaaUOb3ZjlITEfO9HrJJ30XjOzwnJ41uE178zjl5f7h_Wz7lq5fH5-XtKre8ln3ODEgr6opWWFuQxrrSGrALzp3QplkwzWoDvGbCScFKIypbG8EM19A41tR8Tq6m3m0MXztMvdr4ZLFtdYdhlxSVTIhSjgdG681ktTGkFLFR2-g3Ou4VBXXAqNbqL0Z1wKiAqxHjGL6bwjg-8-0xqmQ9dhadj2h75YL_T80PVbqDiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825548717</pqid></control><display><type>article</type><title>Control design for a two-bladed downwind teeterless damped free-yaw wind turbine</title><source>Elsevier ScienceDirect Journals Complete</source><creator>van Solingen, E. ; Beerens, J. ; Mulders, S.P. ; De Breuker, R. ; van Wingerden, J.W.</creator><creatorcontrib>van Solingen, E. ; Beerens, J. ; Mulders, S.P. ; De Breuker, R. ; van Wingerden, J.W.</creatorcontrib><description>In this paper, a control architecture for a two-bladed downwind teeterless damped free-yaw wind turbine is developed. The wind turbine features a physical yaw damper which provides damping to the yawing motion of the rotor-nacelle assembly. Individual Pitch Control (IPC)11List of abbreviations: Individual Pitch Control (IPC); Collective Pitch Control (CPC); Linear Individual Pitch Control (LIPC); Multi-Blade Coordinate (MBC); Multi-Blade Coordinate (MBC); Out-of-Plane (OoP); In-Plane (IP); Variance Accounted For (VAF); Damage Equivalent Load (DEL); Extreme Direction Change (EDC); Proportional Integral (PI).List of symbols:  Ttrq: Demanded generator torque for speed regulation;  Tdtd: Demanded generator torque for drivetrain damping;  Tgen: Demanded generator torque;  Ωrated: Rated generator speed setpoint;  Ωgen: Generator speed control setpoint;  θcol: Collective blade pitch angle;  θcol: Collective blade pitch angle;  θ1: Individual blade 1 pitch angle;  θ2: Individual blade 2 pitch angle;  Θ1: Blade 1 pitch angle;  Θ2: Blade 2 pitch angle;  θtilt: Non-rotating blade pitch setpoint for tilt coordinate;  θyaw: Non-rotating blade pitch setpoint for yaw coordinate;  My, 1: Blade 1 Out-of-Plane root bending moment;  My, 2: Blade 2 Out-of-Plane root bending moment;  Mx, 1: Blade 1 In-Plane root bending moment;  Mx, 2: Blade 2 In-Plane root bending moment;  Mtilt: Rotor tilt moment;  Myaw: Rotor yaw moment;  ψ: Rotor azimuth angle;  ψoff: Azimuth angle offset;  ϕref: Yaw setpoint angle;  ϕ˙yb: Yaw bearing angular velocity;  n: n’th harmonic of load;  ϕyaw: Yaw misalignment (between turbine yaw position and wind direction);  ϕ: Yaw error (controller input);  Lθ: Low-pass filter for individual pitch angles;  Lϕ: Low-pass filter for yaw misalignment signal;  HIPC: High-pass filter for individual blade pitch signals;  Lyb: Low-pass filter for yaw bearing angular velocity signal;  fIPC: Cut-off frequency of high-pass filter for individual pitch control  κ: Gain of yaw model;  τ: Time constant of yaw model;  Td: Time delay in yaw model. is employed to obtain yaw control so as to actively track the wind direction and to reduce the turbine loads. The objectives of both load and yaw control by IPC are conflicting and therefore two decoupling strategies are presented and compared in terms of controller design, stability, and turbine loads. The design of the different controllers and the physical yaw damping are coupled and have a large impact on the turbine loads. It is shown that the tuning of the controllers and the choice of the yaw damping value involve a tradeoff between blade and tower loads. All results have been obtained by high-fidelity simulations of the state-of-the-art 2-B Energy 2B6 wind turbine.</description><identifier>ISSN: 0957-4158</identifier><identifier>EISSN: 1873-4006</identifier><identifier>DOI: 10.1016/j.mechatronics.2016.03.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Controllers ; Damping ; Decoupling ; Free yaw ; Individual pitch control ; Interprocessor communication ; Load reduction ; Mechatronics ; Turbines ; Two-bladed wind turbines ; Wind turbines ; Yaw ; Yaw control ; Yaw damping</subject><ispartof>Mechatronics (Oxford), 2016-06, Vol.36, p.77-96</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-2b08c59717e9c08bcd4cb0c633d5abf62a29b03925d8524b57c9b52b3a0fd2f93</citedby><cites>FETCH-LOGICAL-c398t-2b08c59717e9c08bcd4cb0c633d5abf62a29b03925d8524b57c9b52b3a0fd2f93</cites><orcidid>0000-0002-7882-2173 ; 0000-0002-5166-9041 ; 0000-0003-4689-257X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957415816300083$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>van Solingen, E.</creatorcontrib><creatorcontrib>Beerens, J.</creatorcontrib><creatorcontrib>Mulders, S.P.</creatorcontrib><creatorcontrib>De Breuker, R.</creatorcontrib><creatorcontrib>van Wingerden, J.W.</creatorcontrib><title>Control design for a two-bladed downwind teeterless damped free-yaw wind turbine</title><title>Mechatronics (Oxford)</title><description>In this paper, a control architecture for a two-bladed downwind teeterless damped free-yaw wind turbine is developed. The wind turbine features a physical yaw damper which provides damping to the yawing motion of the rotor-nacelle assembly. Individual Pitch Control (IPC)11List of abbreviations: Individual Pitch Control (IPC); Collective Pitch Control (CPC); Linear Individual Pitch Control (LIPC); Multi-Blade Coordinate (MBC); Multi-Blade Coordinate (MBC); Out-of-Plane (OoP); In-Plane (IP); Variance Accounted For (VAF); Damage Equivalent Load (DEL); Extreme Direction Change (EDC); Proportional Integral (PI).List of symbols:  Ttrq: Demanded generator torque for speed regulation;  Tdtd: Demanded generator torque for drivetrain damping;  Tgen: Demanded generator torque;  Ωrated: Rated generator speed setpoint;  Ωgen: Generator speed control setpoint;  θcol: Collective blade pitch angle;  θcol: Collective blade pitch angle;  θ1: Individual blade 1 pitch angle;  θ2: Individual blade 2 pitch angle;  Θ1: Blade 1 pitch angle;  Θ2: Blade 2 pitch angle;  θtilt: Non-rotating blade pitch setpoint for tilt coordinate;  θyaw: Non-rotating blade pitch setpoint for yaw coordinate;  My, 1: Blade 1 Out-of-Plane root bending moment;  My, 2: Blade 2 Out-of-Plane root bending moment;  Mx, 1: Blade 1 In-Plane root bending moment;  Mx, 2: Blade 2 In-Plane root bending moment;  Mtilt: Rotor tilt moment;  Myaw: Rotor yaw moment;  ψ: Rotor azimuth angle;  ψoff: Azimuth angle offset;  ϕref: Yaw setpoint angle;  ϕ˙yb: Yaw bearing angular velocity;  n: n’th harmonic of load;  ϕyaw: Yaw misalignment (between turbine yaw position and wind direction);  ϕ: Yaw error (controller input);  Lθ: Low-pass filter for individual pitch angles;  Lϕ: Low-pass filter for yaw misalignment signal;  HIPC: High-pass filter for individual blade pitch signals;  Lyb: Low-pass filter for yaw bearing angular velocity signal;  fIPC: Cut-off frequency of high-pass filter for individual pitch control  κ: Gain of yaw model;  τ: Time constant of yaw model;  Td: Time delay in yaw model. is employed to obtain yaw control so as to actively track the wind direction and to reduce the turbine loads. The objectives of both load and yaw control by IPC are conflicting and therefore two decoupling strategies are presented and compared in terms of controller design, stability, and turbine loads. The design of the different controllers and the physical yaw damping are coupled and have a large impact on the turbine loads. It is shown that the tuning of the controllers and the choice of the yaw damping value involve a tradeoff between blade and tower loads. All results have been obtained by high-fidelity simulations of the state-of-the-art 2-B Energy 2B6 wind turbine.</description><subject>Controllers</subject><subject>Damping</subject><subject>Decoupling</subject><subject>Free yaw</subject><subject>Individual pitch control</subject><subject>Interprocessor communication</subject><subject>Load reduction</subject><subject>Mechatronics</subject><subject>Turbines</subject><subject>Two-bladed wind turbines</subject><subject>Wind turbines</subject><subject>Yaw</subject><subject>Yaw control</subject><subject>Yaw damping</subject><issn>0957-4158</issn><issn>1873-4006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkDtPwzAQxy0EEqXwHSImloSzHTcOGypPqRIMMFt-XMBVGhc7Jeq3J1UYGJlOuv_jdD9CLikUFOjiel1s0H7qPobO21SwcVcALwDkEZlRWfG8BFgckxnUospLKuQpOUtpDUArSqsZeV2Gbky3mcPkP7qsCTHTWT-E3LTaoctcGLrBdy7rEXuMLaaUOb3ZjlITEfO9HrJJ30XjOzwnJ41uE178zjl5f7h_Wz7lq5fH5-XtKre8ln3ODEgr6opWWFuQxrrSGrALzp3QplkwzWoDvGbCScFKIypbG8EM19A41tR8Tq6m3m0MXztMvdr4ZLFtdYdhlxSVTIhSjgdG681ktTGkFLFR2-g3Ou4VBXXAqNbqL0Z1wKiAqxHjGL6bwjg-8-0xqmQ9dhadj2h75YL_T80PVbqDiA</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>van Solingen, E.</creator><creator>Beerens, J.</creator><creator>Mulders, S.P.</creator><creator>De Breuker, R.</creator><creator>van Wingerden, J.W.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7882-2173</orcidid><orcidid>https://orcid.org/0000-0002-5166-9041</orcidid><orcidid>https://orcid.org/0000-0003-4689-257X</orcidid></search><sort><creationdate>20160601</creationdate><title>Control design for a two-bladed downwind teeterless damped free-yaw wind turbine</title><author>van Solingen, E. ; Beerens, J. ; Mulders, S.P. ; De Breuker, R. ; van Wingerden, J.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-2b08c59717e9c08bcd4cb0c633d5abf62a29b03925d8524b57c9b52b3a0fd2f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Controllers</topic><topic>Damping</topic><topic>Decoupling</topic><topic>Free yaw</topic><topic>Individual pitch control</topic><topic>Interprocessor communication</topic><topic>Load reduction</topic><topic>Mechatronics</topic><topic>Turbines</topic><topic>Two-bladed wind turbines</topic><topic>Wind turbines</topic><topic>Yaw</topic><topic>Yaw control</topic><topic>Yaw damping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Solingen, E.</creatorcontrib><creatorcontrib>Beerens, J.</creatorcontrib><creatorcontrib>Mulders, S.P.</creatorcontrib><creatorcontrib>De Breuker, R.</creatorcontrib><creatorcontrib>van Wingerden, J.W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechatronics (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Solingen, E.</au><au>Beerens, J.</au><au>Mulders, S.P.</au><au>De Breuker, R.</au><au>van Wingerden, J.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control design for a two-bladed downwind teeterless damped free-yaw wind turbine</atitle><jtitle>Mechatronics (Oxford)</jtitle><date>2016-06-01</date><risdate>2016</risdate><volume>36</volume><spage>77</spage><epage>96</epage><pages>77-96</pages><issn>0957-4158</issn><eissn>1873-4006</eissn><abstract>In this paper, a control architecture for a two-bladed downwind teeterless damped free-yaw wind turbine is developed. The wind turbine features a physical yaw damper which provides damping to the yawing motion of the rotor-nacelle assembly. Individual Pitch Control (IPC)11List of abbreviations: Individual Pitch Control (IPC); Collective Pitch Control (CPC); Linear Individual Pitch Control (LIPC); Multi-Blade Coordinate (MBC); Multi-Blade Coordinate (MBC); Out-of-Plane (OoP); In-Plane (IP); Variance Accounted For (VAF); Damage Equivalent Load (DEL); Extreme Direction Change (EDC); Proportional Integral (PI).List of symbols:  Ttrq: Demanded generator torque for speed regulation;  Tdtd: Demanded generator torque for drivetrain damping;  Tgen: Demanded generator torque;  Ωrated: Rated generator speed setpoint;  Ωgen: Generator speed control setpoint;  θcol: Collective blade pitch angle;  θcol: Collective blade pitch angle;  θ1: Individual blade 1 pitch angle;  θ2: Individual blade 2 pitch angle;  Θ1: Blade 1 pitch angle;  Θ2: Blade 2 pitch angle;  θtilt: Non-rotating blade pitch setpoint for tilt coordinate;  θyaw: Non-rotating blade pitch setpoint for yaw coordinate;  My, 1: Blade 1 Out-of-Plane root bending moment;  My, 2: Blade 2 Out-of-Plane root bending moment;  Mx, 1: Blade 1 In-Plane root bending moment;  Mx, 2: Blade 2 In-Plane root bending moment;  Mtilt: Rotor tilt moment;  Myaw: Rotor yaw moment;  ψ: Rotor azimuth angle;  ψoff: Azimuth angle offset;  ϕref: Yaw setpoint angle;  ϕ˙yb: Yaw bearing angular velocity;  n: n’th harmonic of load;  ϕyaw: Yaw misalignment (between turbine yaw position and wind direction);  ϕ: Yaw error (controller input);  Lθ: Low-pass filter for individual pitch angles;  Lϕ: Low-pass filter for yaw misalignment signal;  HIPC: High-pass filter for individual blade pitch signals;  Lyb: Low-pass filter for yaw bearing angular velocity signal;  fIPC: Cut-off frequency of high-pass filter for individual pitch control  κ: Gain of yaw model;  τ: Time constant of yaw model;  Td: Time delay in yaw model. is employed to obtain yaw control so as to actively track the wind direction and to reduce the turbine loads. The objectives of both load and yaw control by IPC are conflicting and therefore two decoupling strategies are presented and compared in terms of controller design, stability, and turbine loads. The design of the different controllers and the physical yaw damping are coupled and have a large impact on the turbine loads. It is shown that the tuning of the controllers and the choice of the yaw damping value involve a tradeoff between blade and tower loads. All results have been obtained by high-fidelity simulations of the state-of-the-art 2-B Energy 2B6 wind turbine.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.mechatronics.2016.03.008</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7882-2173</orcidid><orcidid>https://orcid.org/0000-0002-5166-9041</orcidid><orcidid>https://orcid.org/0000-0003-4689-257X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4158
ispartof Mechatronics (Oxford), 2016-06, Vol.36, p.77-96
issn 0957-4158
1873-4006
language eng
recordid cdi_proquest_miscellaneous_1825548717
source Elsevier ScienceDirect Journals Complete
subjects Controllers
Damping
Decoupling
Free yaw
Individual pitch control
Interprocessor communication
Load reduction
Mechatronics
Turbines
Two-bladed wind turbines
Wind turbines
Yaw
Yaw control
Yaw damping
title Control design for a two-bladed downwind teeterless damped free-yaw wind turbine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A20%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20design%20for%20a%20two-bladed%20downwind%20teeterless%20damped%20free-yaw%20wind%20turbine&rft.jtitle=Mechatronics%20(Oxford)&rft.au=van%20Solingen,%20E.&rft.date=2016-06-01&rft.volume=36&rft.spage=77&rft.epage=96&rft.pages=77-96&rft.issn=0957-4158&rft.eissn=1873-4006&rft_id=info:doi/10.1016/j.mechatronics.2016.03.008&rft_dat=%3Cproquest_cross%3E1825548717%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825548717&rft_id=info:pmid/&rft_els_id=S0957415816300083&rfr_iscdi=true