Characterisation of stresses on microcarriers in a stirred bioreactor

•Hydrodynamics of a stirred suspension bioreactor is captured through CFD simulation.•Blended LES presented to account for free surface effects in a single-phase model.•Lagrangian particle tracking used to measure shear stress exposure of microcarriers.•Stresses from model linked to established stem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2016-08, Vol.40 (15-16), p.6787-6804
Hauptverfasser: Berry, J.D., Liovic, P., Šutalo, I.D., Stewart, R.L., Glattauer, V., Meagher, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6804
container_issue 15-16
container_start_page 6787
container_title Applied mathematical modelling
container_volume 40
creator Berry, J.D.
Liovic, P.
Šutalo, I.D.
Stewart, R.L.
Glattauer, V.
Meagher, L.
description •Hydrodynamics of a stirred suspension bioreactor is captured through CFD simulation.•Blended LES presented to account for free surface effects in a single-phase model.•Lagrangian particle tracking used to measure shear stress exposure of microcarriers.•Stresses from model linked to established stem-cell differentiation evidence.•Exposure to stress characterised by fluctuations over very short time-scales. A computational fluid dynamics model for the flow of culture in a Corning™ spinner-flask stirred bioreactor has been used to characterise stresses experienced by microcarriers immersed in the fluid. Validation of the turbulent flow using experimental Particle Image Velocimetry (PIV) found advanced Large Eddy Simulation (LES) to be superior to Unsteady Reynolds averaging (URANS) modelling as a computational strategy for accurately capturing instantaneous velocity fluctuations of the types observed in the experiments. The simulations demonstrated that stress exposures experienced by microcarriers were highest during impeller start-up. After start-up, microcarriers experienced elevated levels of fluctuating stress of magnitudes known to cause cell differentiation, potentially compromising expansion of a homogeneous population with multi-lineage potential. Decreasing the impeller speed from 70 RPM to 50 RPM in the Corning™ flask was not found to necessarily reduce microcarrier stress exposure, because such a measure does not control the spatio-temporal coincidence of the microcarrier population with high regions of stress within the bioreactor. Modifications to bioreactor geometries and operational protocols are identified that can be pursued if such issues with dynamic stem cell culture arise.
doi_str_mv 10.1016/j.apm.2016.02.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825548087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X16300993</els_id><sourcerecordid>1825548087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-e1a7e9f92ed7f73d637b4315d01772fba7bf981721c581f1a7588d75f5c7b2563</originalsourceid><addsrcrecordid>eNp9UE1LAzEQzUHBWv0B3vboZdd8NM0unqTUDyh4UfAWsskEU7qbOrMV_Pem1LMwMPOY94Z5j7EbwRvBxfJu27j90MgyNlyW0mdsxhU3dccXHxfskmjLOdcFzdh69enQ-QkwkZtSHqscK5oQiICqAofkMXuHmACpSmPlyjohQqj6lBGKNuMVO49uR3D91-fs_XH9tnquN69PL6uHTe2VUVMNwhnoYichmGhUWCrTL5TQgQtjZOyd6WPXCiOF162Iha3bNhgdtTe91Es1Z7enu3vMXwegyQ6JPOx2boR8ICtaqfWi5a0pVHGilveJEKLdYxoc_ljB7TEmu7UlJnuMyXJZShfN_UkDxcN3MWzJJxg9hITgJxty-kf9C6P9cmk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825548087</pqid></control><display><type>article</type><title>Characterisation of stresses on microcarriers in a stirred bioreactor</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Berry, J.D. ; Liovic, P. ; Šutalo, I.D. ; Stewart, R.L. ; Glattauer, V. ; Meagher, L.</creator><creatorcontrib>Berry, J.D. ; Liovic, P. ; Šutalo, I.D. ; Stewart, R.L. ; Glattauer, V. ; Meagher, L.</creatorcontrib><description>•Hydrodynamics of a stirred suspension bioreactor is captured through CFD simulation.•Blended LES presented to account for free surface effects in a single-phase model.•Lagrangian particle tracking used to measure shear stress exposure of microcarriers.•Stresses from model linked to established stem-cell differentiation evidence.•Exposure to stress characterised by fluctuations over very short time-scales. A computational fluid dynamics model for the flow of culture in a Corning™ spinner-flask stirred bioreactor has been used to characterise stresses experienced by microcarriers immersed in the fluid. Validation of the turbulent flow using experimental Particle Image Velocimetry (PIV) found advanced Large Eddy Simulation (LES) to be superior to Unsteady Reynolds averaging (URANS) modelling as a computational strategy for accurately capturing instantaneous velocity fluctuations of the types observed in the experiments. The simulations demonstrated that stress exposures experienced by microcarriers were highest during impeller start-up. After start-up, microcarriers experienced elevated levels of fluctuating stress of magnitudes known to cause cell differentiation, potentially compromising expansion of a homogeneous population with multi-lineage potential. Decreasing the impeller speed from 70 RPM to 50 RPM in the Corning™ flask was not found to necessarily reduce microcarrier stress exposure, because such a measure does not control the spatio-temporal coincidence of the microcarrier population with high regions of stress within the bioreactor. Modifications to bioreactor geometries and operational protocols are identified that can be pursued if such issues with dynamic stem cell culture arise.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2016.02.025</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Bioreactors ; Computational fluid dynamics ; Culture ; Impellers ; Large eddy simulation ; Mathematical models ; Microcarriers ; Shear stress ; Stem cells ; Stresses ; Suspension bioreactor ; Turbulent flow</subject><ispartof>Applied mathematical modelling, 2016-08, Vol.40 (15-16), p.6787-6804</ispartof><rights>2016 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-e1a7e9f92ed7f73d637b4315d01772fba7bf981721c581f1a7588d75f5c7b2563</citedby><cites>FETCH-LOGICAL-c373t-e1a7e9f92ed7f73d637b4315d01772fba7bf981721c581f1a7588d75f5c7b2563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2016.02.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Berry, J.D.</creatorcontrib><creatorcontrib>Liovic, P.</creatorcontrib><creatorcontrib>Šutalo, I.D.</creatorcontrib><creatorcontrib>Stewart, R.L.</creatorcontrib><creatorcontrib>Glattauer, V.</creatorcontrib><creatorcontrib>Meagher, L.</creatorcontrib><title>Characterisation of stresses on microcarriers in a stirred bioreactor</title><title>Applied mathematical modelling</title><description>•Hydrodynamics of a stirred suspension bioreactor is captured through CFD simulation.•Blended LES presented to account for free surface effects in a single-phase model.•Lagrangian particle tracking used to measure shear stress exposure of microcarriers.•Stresses from model linked to established stem-cell differentiation evidence.•Exposure to stress characterised by fluctuations over very short time-scales. A computational fluid dynamics model for the flow of culture in a Corning™ spinner-flask stirred bioreactor has been used to characterise stresses experienced by microcarriers immersed in the fluid. Validation of the turbulent flow using experimental Particle Image Velocimetry (PIV) found advanced Large Eddy Simulation (LES) to be superior to Unsteady Reynolds averaging (URANS) modelling as a computational strategy for accurately capturing instantaneous velocity fluctuations of the types observed in the experiments. The simulations demonstrated that stress exposures experienced by microcarriers were highest during impeller start-up. After start-up, microcarriers experienced elevated levels of fluctuating stress of magnitudes known to cause cell differentiation, potentially compromising expansion of a homogeneous population with multi-lineage potential. Decreasing the impeller speed from 70 RPM to 50 RPM in the Corning™ flask was not found to necessarily reduce microcarrier stress exposure, because such a measure does not control the spatio-temporal coincidence of the microcarrier population with high regions of stress within the bioreactor. Modifications to bioreactor geometries and operational protocols are identified that can be pursued if such issues with dynamic stem cell culture arise.</description><subject>Bioreactors</subject><subject>Computational fluid dynamics</subject><subject>Culture</subject><subject>Impellers</subject><subject>Large eddy simulation</subject><subject>Mathematical models</subject><subject>Microcarriers</subject><subject>Shear stress</subject><subject>Stem cells</subject><subject>Stresses</subject><subject>Suspension bioreactor</subject><subject>Turbulent flow</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQzUHBWv0B3vboZdd8NM0unqTUDyh4UfAWsskEU7qbOrMV_Pem1LMwMPOY94Z5j7EbwRvBxfJu27j90MgyNlyW0mdsxhU3dccXHxfskmjLOdcFzdh69enQ-QkwkZtSHqscK5oQiICqAofkMXuHmACpSmPlyjohQqj6lBGKNuMVO49uR3D91-fs_XH9tnquN69PL6uHTe2VUVMNwhnoYichmGhUWCrTL5TQgQtjZOyd6WPXCiOF162Iha3bNhgdtTe91Es1Z7enu3vMXwegyQ6JPOx2boR8ICtaqfWi5a0pVHGilveJEKLdYxoc_ljB7TEmu7UlJnuMyXJZShfN_UkDxcN3MWzJJxg9hITgJxty-kf9C6P9cmk</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Berry, J.D.</creator><creator>Liovic, P.</creator><creator>Šutalo, I.D.</creator><creator>Stewart, R.L.</creator><creator>Glattauer, V.</creator><creator>Meagher, L.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201608</creationdate><title>Characterisation of stresses on microcarriers in a stirred bioreactor</title><author>Berry, J.D. ; Liovic, P. ; Šutalo, I.D. ; Stewart, R.L. ; Glattauer, V. ; Meagher, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-e1a7e9f92ed7f73d637b4315d01772fba7bf981721c581f1a7588d75f5c7b2563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bioreactors</topic><topic>Computational fluid dynamics</topic><topic>Culture</topic><topic>Impellers</topic><topic>Large eddy simulation</topic><topic>Mathematical models</topic><topic>Microcarriers</topic><topic>Shear stress</topic><topic>Stem cells</topic><topic>Stresses</topic><topic>Suspension bioreactor</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berry, J.D.</creatorcontrib><creatorcontrib>Liovic, P.</creatorcontrib><creatorcontrib>Šutalo, I.D.</creatorcontrib><creatorcontrib>Stewart, R.L.</creatorcontrib><creatorcontrib>Glattauer, V.</creatorcontrib><creatorcontrib>Meagher, L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berry, J.D.</au><au>Liovic, P.</au><au>Šutalo, I.D.</au><au>Stewart, R.L.</au><au>Glattauer, V.</au><au>Meagher, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation of stresses on microcarriers in a stirred bioreactor</atitle><jtitle>Applied mathematical modelling</jtitle><date>2016-08</date><risdate>2016</risdate><volume>40</volume><issue>15-16</issue><spage>6787</spage><epage>6804</epage><pages>6787-6804</pages><issn>0307-904X</issn><abstract>•Hydrodynamics of a stirred suspension bioreactor is captured through CFD simulation.•Blended LES presented to account for free surface effects in a single-phase model.•Lagrangian particle tracking used to measure shear stress exposure of microcarriers.•Stresses from model linked to established stem-cell differentiation evidence.•Exposure to stress characterised by fluctuations over very short time-scales. A computational fluid dynamics model for the flow of culture in a Corning™ spinner-flask stirred bioreactor has been used to characterise stresses experienced by microcarriers immersed in the fluid. Validation of the turbulent flow using experimental Particle Image Velocimetry (PIV) found advanced Large Eddy Simulation (LES) to be superior to Unsteady Reynolds averaging (URANS) modelling as a computational strategy for accurately capturing instantaneous velocity fluctuations of the types observed in the experiments. The simulations demonstrated that stress exposures experienced by microcarriers were highest during impeller start-up. After start-up, microcarriers experienced elevated levels of fluctuating stress of magnitudes known to cause cell differentiation, potentially compromising expansion of a homogeneous population with multi-lineage potential. Decreasing the impeller speed from 70 RPM to 50 RPM in the Corning™ flask was not found to necessarily reduce microcarrier stress exposure, because such a measure does not control the spatio-temporal coincidence of the microcarrier population with high regions of stress within the bioreactor. Modifications to bioreactor geometries and operational protocols are identified that can be pursued if such issues with dynamic stem cell culture arise.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2016.02.025</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied mathematical modelling, 2016-08, Vol.40 (15-16), p.6787-6804
issn 0307-904X
language eng
recordid cdi_proquest_miscellaneous_1825548087
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Bioreactors
Computational fluid dynamics
Culture
Impellers
Large eddy simulation
Mathematical models
Microcarriers
Shear stress
Stem cells
Stresses
Suspension bioreactor
Turbulent flow
title Characterisation of stresses on microcarriers in a stirred bioreactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T10%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20of%20stresses%20on%20microcarriers%20in%20a%20stirred%20bioreactor&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Berry,%20J.D.&rft.date=2016-08&rft.volume=40&rft.issue=15-16&rft.spage=6787&rft.epage=6804&rft.pages=6787-6804&rft.issn=0307-904X&rft_id=info:doi/10.1016/j.apm.2016.02.025&rft_dat=%3Cproquest_cross%3E1825548087%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825548087&rft_id=info:pmid/&rft_els_id=S0307904X16300993&rfr_iscdi=true