Timing consistency checking for UML/MARTE behavioral models
UML/MARTE model-driven development approaches are gaining attention in developing real-time embedded software (RTES). UML behavioral models with MARTE annotations are used to describe timing behaviors and timing characteristics of RTES. Particularly, state machine, sequence, and timing diagrams with...
Gespeichert in:
Veröffentlicht in: | Software quality journal 2016-09, Vol.24 (3), p.835-876 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 876 |
---|---|
container_issue | 3 |
container_start_page | 835 |
container_title | Software quality journal |
container_volume | 24 |
creator | Choi, Jinho Jee, Eunkyoung Bae, Doo-Hwan |
description | UML/MARTE model-driven development approaches are gaining attention in developing real-time embedded software (RTES). UML behavioral models with MARTE annotations are used to describe timing behaviors and timing characteristics of RTES. Particularly, state machine, sequence, and timing diagrams with MARTE annotations are appropriate to understand and analyze timing behaviors of RTES. However, to guarantee software correctness and safety, timing inconsistencies in UML/MARTE should be identified in the design phase of RTES. UML/MARTE timing inconsistencies are related to modeling errors and can be hazards throughout the lifecycle of RTES. We propose a systematic approach to check timing consistency of state machine, sequence, and timing diagrams with MARTE annotations for RTES. First, we present how state machine, sequence, and timing diagrams with MARTE annotations specify the behaviors of RTES. To overcome informal semantics of UML/MARTE models, we provide formal definitions of state machine, sequence, and timing diagrams with MARTE annotations. Second, we present the timing consistency checking approach that consists of a rule-based and a model checking-based timing consistency checking. In the rule-based timing consistency checking, we validate well formedness of UML/MARTE behavioral models in timing aspects. In the model checking-based timing consistency checking, we verify whether timing behaviors of sequence and timing diagrams with MARTE annotations are consistent with the timing behaviors of state machine diagrams with MARTE annotations. We support an automated timing consistency checking tool UML/MARTE timing Consistency Analyzer for a seamless approach. We demonstrate the effectiveness and the practicality of the proposed approach by two case studies using cruise control system software and guidance and control unit software . |
doi_str_mv | 10.1007/s11219-015-9290-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825547352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825547352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-362f1bad640feb6f4255088aa265440de9d1d93f4dd758401d35abc91e005aac3</originalsourceid><addsrcrecordid>eNp1kEtLAzEURoMoWKs_wN2AGzex904eM8FVKfUBLYK065DJZNqp86hJK_TfO8O4EMFV4HLORziE3CI8IEAyCYgxKgooqIoVUHlGRigSRpHJ5JyMQElGFUN-Sa5C2AH0Fh-Rx1VZl80msm0TynBwjT1FduvsR38sWh-tl4vJcvq-mkeZ25qvsvWmiuo2d1W4JheFqYK7-XnHZP00X81e6OLt-XU2XVDLuDpQJuMCM5NLDoXLZMFjISBNjYml4Bxyp3LMFSt4nici5YA5EyazCh2AMMayMbkfdve-_Ty6cNB1GayrKtO49hg0pt0iT5iIO_TuD7prj77pftdRABJlkvQUDpT1bQjeFXrvy9r4k0bQfRg95NRdTt3n1LJz4sEJHdtsnP-1_K_0Db7vdbI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800616772</pqid></control><display><type>article</type><title>Timing consistency checking for UML/MARTE behavioral models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Choi, Jinho ; Jee, Eunkyoung ; Bae, Doo-Hwan</creator><creatorcontrib>Choi, Jinho ; Jee, Eunkyoung ; Bae, Doo-Hwan</creatorcontrib><description>UML/MARTE model-driven development approaches are gaining attention in developing real-time embedded software (RTES). UML behavioral models with MARTE annotations are used to describe timing behaviors and timing characteristics of RTES. Particularly, state machine, sequence, and timing diagrams with MARTE annotations are appropriate to understand and analyze timing behaviors of RTES. However, to guarantee software correctness and safety, timing inconsistencies in UML/MARTE should be identified in the design phase of RTES. UML/MARTE timing inconsistencies are related to modeling errors and can be hazards throughout the lifecycle of RTES. We propose a systematic approach to check timing consistency of state machine, sequence, and timing diagrams with MARTE annotations for RTES. First, we present how state machine, sequence, and timing diagrams with MARTE annotations specify the behaviors of RTES. To overcome informal semantics of UML/MARTE models, we provide formal definitions of state machine, sequence, and timing diagrams with MARTE annotations. Second, we present the timing consistency checking approach that consists of a rule-based and a model checking-based timing consistency checking. In the rule-based timing consistency checking, we validate well formedness of UML/MARTE behavioral models in timing aspects. In the model checking-based timing consistency checking, we verify whether timing behaviors of sequence and timing diagrams with MARTE annotations are consistent with the timing behaviors of state machine diagrams with MARTE annotations. We support an automated timing consistency checking tool UML/MARTE timing Consistency Analyzer for a seamless approach. We demonstrate the effectiveness and the practicality of the proposed approach by two case studies using cruise control system software and guidance and control unit software .</description><identifier>ISSN: 0963-9314</identifier><identifier>EISSN: 1573-1367</identifier><identifier>DOI: 10.1007/s11219-015-9290-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Annotations ; Automation ; Behavior ; Case studies ; Compilers ; Computer based modeling ; Computer programs ; Computer Science ; Consistency ; Data Structures and Information Theory ; Design ; Designers ; Embedded systems ; Human error ; Interpreters ; Mathematical models ; Operating Systems ; Programming Languages ; Semantics ; Software ; Software engineering ; Software Engineering/Programming and Operating Systems ; State machines ; Studies ; Time measurements ; Unified Modeling Language</subject><ispartof>Software quality journal, 2016-09, Vol.24 (3), p.835-876</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-362f1bad640feb6f4255088aa265440de9d1d93f4dd758401d35abc91e005aac3</citedby><cites>FETCH-LOGICAL-c349t-362f1bad640feb6f4255088aa265440de9d1d93f4dd758401d35abc91e005aac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11219-015-9290-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11219-015-9290-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Choi, Jinho</creatorcontrib><creatorcontrib>Jee, Eunkyoung</creatorcontrib><creatorcontrib>Bae, Doo-Hwan</creatorcontrib><title>Timing consistency checking for UML/MARTE behavioral models</title><title>Software quality journal</title><addtitle>Software Qual J</addtitle><description>UML/MARTE model-driven development approaches are gaining attention in developing real-time embedded software (RTES). UML behavioral models with MARTE annotations are used to describe timing behaviors and timing characteristics of RTES. Particularly, state machine, sequence, and timing diagrams with MARTE annotations are appropriate to understand and analyze timing behaviors of RTES. However, to guarantee software correctness and safety, timing inconsistencies in UML/MARTE should be identified in the design phase of RTES. UML/MARTE timing inconsistencies are related to modeling errors and can be hazards throughout the lifecycle of RTES. We propose a systematic approach to check timing consistency of state machine, sequence, and timing diagrams with MARTE annotations for RTES. First, we present how state machine, sequence, and timing diagrams with MARTE annotations specify the behaviors of RTES. To overcome informal semantics of UML/MARTE models, we provide formal definitions of state machine, sequence, and timing diagrams with MARTE annotations. Second, we present the timing consistency checking approach that consists of a rule-based and a model checking-based timing consistency checking. In the rule-based timing consistency checking, we validate well formedness of UML/MARTE behavioral models in timing aspects. In the model checking-based timing consistency checking, we verify whether timing behaviors of sequence and timing diagrams with MARTE annotations are consistent with the timing behaviors of state machine diagrams with MARTE annotations. We support an automated timing consistency checking tool UML/MARTE timing Consistency Analyzer for a seamless approach. We demonstrate the effectiveness and the practicality of the proposed approach by two case studies using cruise control system software and guidance and control unit software .</description><subject>Annotations</subject><subject>Automation</subject><subject>Behavior</subject><subject>Case studies</subject><subject>Compilers</subject><subject>Computer based modeling</subject><subject>Computer programs</subject><subject>Computer Science</subject><subject>Consistency</subject><subject>Data Structures and Information Theory</subject><subject>Design</subject><subject>Designers</subject><subject>Embedded systems</subject><subject>Human error</subject><subject>Interpreters</subject><subject>Mathematical models</subject><subject>Operating Systems</subject><subject>Programming Languages</subject><subject>Semantics</subject><subject>Software</subject><subject>Software engineering</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>State machines</subject><subject>Studies</subject><subject>Time measurements</subject><subject>Unified Modeling Language</subject><issn>0963-9314</issn><issn>1573-1367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLAzEURoMoWKs_wN2AGzex904eM8FVKfUBLYK065DJZNqp86hJK_TfO8O4EMFV4HLORziE3CI8IEAyCYgxKgooqIoVUHlGRigSRpHJ5JyMQElGFUN-Sa5C2AH0Fh-Rx1VZl80msm0TynBwjT1FduvsR38sWh-tl4vJcvq-mkeZ25qvsvWmiuo2d1W4JheFqYK7-XnHZP00X81e6OLt-XU2XVDLuDpQJuMCM5NLDoXLZMFjISBNjYml4Bxyp3LMFSt4nici5YA5EyazCh2AMMayMbkfdve-_Ty6cNB1GayrKtO49hg0pt0iT5iIO_TuD7prj77pftdRABJlkvQUDpT1bQjeFXrvy9r4k0bQfRg95NRdTt3n1LJz4sEJHdtsnP-1_K_0Db7vdbI</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Choi, Jinho</creator><creator>Jee, Eunkyoung</creator><creator>Bae, Doo-Hwan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20160901</creationdate><title>Timing consistency checking for UML/MARTE behavioral models</title><author>Choi, Jinho ; Jee, Eunkyoung ; Bae, Doo-Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-362f1bad640feb6f4255088aa265440de9d1d93f4dd758401d35abc91e005aac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Annotations</topic><topic>Automation</topic><topic>Behavior</topic><topic>Case studies</topic><topic>Compilers</topic><topic>Computer based modeling</topic><topic>Computer programs</topic><topic>Computer Science</topic><topic>Consistency</topic><topic>Data Structures and Information Theory</topic><topic>Design</topic><topic>Designers</topic><topic>Embedded systems</topic><topic>Human error</topic><topic>Interpreters</topic><topic>Mathematical models</topic><topic>Operating Systems</topic><topic>Programming Languages</topic><topic>Semantics</topic><topic>Software</topic><topic>Software engineering</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>State machines</topic><topic>Studies</topic><topic>Time measurements</topic><topic>Unified Modeling Language</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jinho</creatorcontrib><creatorcontrib>Jee, Eunkyoung</creatorcontrib><creatorcontrib>Bae, Doo-Hwan</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Software quality journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jinho</au><au>Jee, Eunkyoung</au><au>Bae, Doo-Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Timing consistency checking for UML/MARTE behavioral models</atitle><jtitle>Software quality journal</jtitle><stitle>Software Qual J</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>24</volume><issue>3</issue><spage>835</spage><epage>876</epage><pages>835-876</pages><issn>0963-9314</issn><eissn>1573-1367</eissn><abstract>UML/MARTE model-driven development approaches are gaining attention in developing real-time embedded software (RTES). UML behavioral models with MARTE annotations are used to describe timing behaviors and timing characteristics of RTES. Particularly, state machine, sequence, and timing diagrams with MARTE annotations are appropriate to understand and analyze timing behaviors of RTES. However, to guarantee software correctness and safety, timing inconsistencies in UML/MARTE should be identified in the design phase of RTES. UML/MARTE timing inconsistencies are related to modeling errors and can be hazards throughout the lifecycle of RTES. We propose a systematic approach to check timing consistency of state machine, sequence, and timing diagrams with MARTE annotations for RTES. First, we present how state machine, sequence, and timing diagrams with MARTE annotations specify the behaviors of RTES. To overcome informal semantics of UML/MARTE models, we provide formal definitions of state machine, sequence, and timing diagrams with MARTE annotations. Second, we present the timing consistency checking approach that consists of a rule-based and a model checking-based timing consistency checking. In the rule-based timing consistency checking, we validate well formedness of UML/MARTE behavioral models in timing aspects. In the model checking-based timing consistency checking, we verify whether timing behaviors of sequence and timing diagrams with MARTE annotations are consistent with the timing behaviors of state machine diagrams with MARTE annotations. We support an automated timing consistency checking tool UML/MARTE timing Consistency Analyzer for a seamless approach. We demonstrate the effectiveness and the practicality of the proposed approach by two case studies using cruise control system software and guidance and control unit software .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11219-015-9290-6</doi><tpages>42</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-9314 |
ispartof | Software quality journal, 2016-09, Vol.24 (3), p.835-876 |
issn | 0963-9314 1573-1367 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825547352 |
source | SpringerLink Journals - AutoHoldings |
subjects | Annotations Automation Behavior Case studies Compilers Computer based modeling Computer programs Computer Science Consistency Data Structures and Information Theory Design Designers Embedded systems Human error Interpreters Mathematical models Operating Systems Programming Languages Semantics Software Software engineering Software Engineering/Programming and Operating Systems State machines Studies Time measurements Unified Modeling Language |
title | Timing consistency checking for UML/MARTE behavioral models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Timing%20consistency%20checking%20for%20UML/MARTE%20behavioral%20models&rft.jtitle=Software%20quality%20journal&rft.au=Choi,%20Jinho&rft.date=2016-09-01&rft.volume=24&rft.issue=3&rft.spage=835&rft.epage=876&rft.pages=835-876&rft.issn=0963-9314&rft.eissn=1573-1367&rft_id=info:doi/10.1007/s11219-015-9290-6&rft_dat=%3Cproquest_cross%3E1825547352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1800616772&rft_id=info:pmid/&rfr_iscdi=true |