Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach
Computational homogenisation approaches using high resolution images and finite element (FE) modelling have been extensively employed to evaluate the anisotropic elastic properties of trabecular bone. The aim of this study was to extend its application to characterise the macroscopic yield behaviour...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2016-08, Vol.61, p.384-396 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 396 |
---|---|
container_issue | |
container_start_page | 384 |
container_title | Journal of the mechanical behavior of biomedical materials |
container_volume | 61 |
creator | Levrero-Florencio, Francesc Margetts, Lee Sales, Erika Xie, Shuqiao Manda, Krishnagoud Pankaj, Pankaj |
description | Computational homogenisation approaches using high resolution images and finite element (FE) modelling have been extensively employed to evaluate the anisotropic elastic properties of trabecular bone. The aim of this study was to extend its application to characterise the macroscopic yield behaviour of trabecular bone. Twenty trabecular bone samples were scanned using a micro-computed tomography device, converted to voxelised FE meshes and subjected to 160 load cases each (to define a homogenised multiaxial yield surface which represents several possible strain combinations). Simulations were carried out using a parallel code developed in-house. The nonlinear algorithms included both geometrical and material nonlinearities. The study found that for tension-tension and compression-compression regimes in normal strain space, the yield strains have an isotropic behaviour. However, in the tension-compression quadrants, pure shear and combined normal-shear planes, the macroscopic strain norms at yield have a relatively large variation. Also, our treatment of clockwise and counter-clockwise shears as separate loading cases showed that the differences in these two directions cannot be ignored. A quadric yield surface, used to evaluate the goodness of fit, showed that an isotropic criterion adequately represents yield in strain space though errors with orthotropic and anisotropic criteria are slightly smaller. Consequently, although the isotropic yield surface presents itself as the most suitable assumption, it may not work well for all load cases. This work provides a comprehensive assessment of material symmetries of trabecular bone at the macroscale and describes in detail its macroscopic yield and its underlying microscopic mechanics.
•Trabecular bone yield strains are almost independent of fabric and BV/TV.•Its yield behaviour in strain space can be safely assumed to be isotropic.•Yield response of bone in shear indicates an asymmetry.•An eccentric-ellipsoid may adequately represent the macroscopic yield of trabecular bone. |
doi_str_mv | 10.1016/j.jmbbm.2016.04.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825546541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751616116300728</els_id><sourcerecordid>1799213537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-55831111bcf318b9518a05593bb32b40eacae61d94db9284267e402163db64413</originalsourceid><addsrcrecordid>eNqNkUtr3DAUhUVpaNIkv6BQtOzGrq71sLzoooT0AYFumrWQ5DszGmxpKtkD-ffRdNIuS7WRrvjOPXAOIe-AtcBAfdy3-9m5ue3q0DLRMqZfkSvQvW4YaPa6vnsJjQIFl-RtKXvGVGX0G3LZ9cA0F_qKbO-PdlrtEuKWLjuks_U5FZ8OwdOngNNIHe7sMaQ107ShS7YO_TrZTF2KSNdyEloaU5xCxPq9S3PaYgyl7kyR2sMhJ-t3N-RiY6eCty_3NXn8cv_z7lvz8OPr97vPD40XvF8aKTWHepzfcNBukKAtk3LgzvHOCYbWW1QwDmJ0Q6dFp3oUrAPFR6eEAH5NPpz3VttfK5bFzKF4nCYbMa3FgO6kFEr-D9oPQwdc8r6i_IyewikZN-aQw2zzkwFmTmWYvfldhjmVYZgwNeiqev9isLoZx7-aP-lX4NMZwJrIMWA2xQeMHseQ0S9mTOGfBs8_sZwB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799213537</pqid></control><display><type>article</type><title>Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Levrero-Florencio, Francesc ; Margetts, Lee ; Sales, Erika ; Xie, Shuqiao ; Manda, Krishnagoud ; Pankaj, Pankaj</creator><creatorcontrib>Levrero-Florencio, Francesc ; Margetts, Lee ; Sales, Erika ; Xie, Shuqiao ; Manda, Krishnagoud ; Pankaj, Pankaj</creatorcontrib><description>Computational homogenisation approaches using high resolution images and finite element (FE) modelling have been extensively employed to evaluate the anisotropic elastic properties of trabecular bone. The aim of this study was to extend its application to characterise the macroscopic yield behaviour of trabecular bone. Twenty trabecular bone samples were scanned using a micro-computed tomography device, converted to voxelised FE meshes and subjected to 160 load cases each (to define a homogenised multiaxial yield surface which represents several possible strain combinations). Simulations were carried out using a parallel code developed in-house. The nonlinear algorithms included both geometrical and material nonlinearities. The study found that for tension-tension and compression-compression regimes in normal strain space, the yield strains have an isotropic behaviour. However, in the tension-compression quadrants, pure shear and combined normal-shear planes, the macroscopic strain norms at yield have a relatively large variation. Also, our treatment of clockwise and counter-clockwise shears as separate loading cases showed that the differences in these two directions cannot be ignored. A quadric yield surface, used to evaluate the goodness of fit, showed that an isotropic criterion adequately represents yield in strain space though errors with orthotropic and anisotropic criteria are slightly smaller. Consequently, although the isotropic yield surface presents itself as the most suitable assumption, it may not work well for all load cases. This work provides a comprehensive assessment of material symmetries of trabecular bone at the macroscale and describes in detail its macroscopic yield and its underlying microscopic mechanics.
•Trabecular bone yield strains are almost independent of fabric and BV/TV.•Its yield behaviour in strain space can be safely assumed to be isotropic.•Yield response of bone in shear indicates an asymmetry.•An eccentric-ellipsoid may adequately represent the macroscopic yield of trabecular bone.</description><identifier>ISSN: 1751-6161</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2016.04.008</identifier><identifier>PMID: 27108348</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Anisotropic Material ; Anisotropy ; Biomechanical Phenomena ; Bones ; Cancellous Bone - physiology ; Computer simulation ; Finite Element Analysis ; Finite element method ; Finite Elements ; Homogenizing ; Humans ; Multiscale Modelling ; Nonlinearity ; Shear ; Strain ; Stress, Mechanical ; Trabecular Bone ; X-Ray Microtomography ; Yield Surface</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2016-08, Vol.61, p.384-396</ispartof><rights>2016 The Authors</rights><rights>Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-55831111bcf318b9518a05593bb32b40eacae61d94db9284267e402163db64413</citedby><cites>FETCH-LOGICAL-c437t-55831111bcf318b9518a05593bb32b40eacae61d94db9284267e402163db64413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1751616116300728$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27108348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Levrero-Florencio, Francesc</creatorcontrib><creatorcontrib>Margetts, Lee</creatorcontrib><creatorcontrib>Sales, Erika</creatorcontrib><creatorcontrib>Xie, Shuqiao</creatorcontrib><creatorcontrib>Manda, Krishnagoud</creatorcontrib><creatorcontrib>Pankaj, Pankaj</creatorcontrib><title>Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>Computational homogenisation approaches using high resolution images and finite element (FE) modelling have been extensively employed to evaluate the anisotropic elastic properties of trabecular bone. The aim of this study was to extend its application to characterise the macroscopic yield behaviour of trabecular bone. Twenty trabecular bone samples were scanned using a micro-computed tomography device, converted to voxelised FE meshes and subjected to 160 load cases each (to define a homogenised multiaxial yield surface which represents several possible strain combinations). Simulations were carried out using a parallel code developed in-house. The nonlinear algorithms included both geometrical and material nonlinearities. The study found that for tension-tension and compression-compression regimes in normal strain space, the yield strains have an isotropic behaviour. However, in the tension-compression quadrants, pure shear and combined normal-shear planes, the macroscopic strain norms at yield have a relatively large variation. Also, our treatment of clockwise and counter-clockwise shears as separate loading cases showed that the differences in these two directions cannot be ignored. A quadric yield surface, used to evaluate the goodness of fit, showed that an isotropic criterion adequately represents yield in strain space though errors with orthotropic and anisotropic criteria are slightly smaller. Consequently, although the isotropic yield surface presents itself as the most suitable assumption, it may not work well for all load cases. This work provides a comprehensive assessment of material symmetries of trabecular bone at the macroscale and describes in detail its macroscopic yield and its underlying microscopic mechanics.
•Trabecular bone yield strains are almost independent of fabric and BV/TV.•Its yield behaviour in strain space can be safely assumed to be isotropic.•Yield response of bone in shear indicates an asymmetry.•An eccentric-ellipsoid may adequately represent the macroscopic yield of trabecular bone.</description><subject>Anisotropic Material</subject><subject>Anisotropy</subject><subject>Biomechanical Phenomena</subject><subject>Bones</subject><subject>Cancellous Bone - physiology</subject><subject>Computer simulation</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Finite Elements</subject><subject>Homogenizing</subject><subject>Humans</subject><subject>Multiscale Modelling</subject><subject>Nonlinearity</subject><subject>Shear</subject><subject>Strain</subject><subject>Stress, Mechanical</subject><subject>Trabecular Bone</subject><subject>X-Ray Microtomography</subject><subject>Yield Surface</subject><issn>1751-6161</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtr3DAUhUVpaNIkv6BQtOzGrq71sLzoooT0AYFumrWQ5DszGmxpKtkD-ffRdNIuS7WRrvjOPXAOIe-AtcBAfdy3-9m5ue3q0DLRMqZfkSvQvW4YaPa6vnsJjQIFl-RtKXvGVGX0G3LZ9cA0F_qKbO-PdlrtEuKWLjuks_U5FZ8OwdOngNNIHe7sMaQ107ShS7YO_TrZTF2KSNdyEloaU5xCxPq9S3PaYgyl7kyR2sMhJ-t3N-RiY6eCty_3NXn8cv_z7lvz8OPr97vPD40XvF8aKTWHepzfcNBukKAtk3LgzvHOCYbWW1QwDmJ0Q6dFp3oUrAPFR6eEAH5NPpz3VttfK5bFzKF4nCYbMa3FgO6kFEr-D9oPQwdc8r6i_IyewikZN-aQw2zzkwFmTmWYvfldhjmVYZgwNeiqev9isLoZx7-aP-lX4NMZwJrIMWA2xQeMHseQ0S9mTOGfBs8_sZwB</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Levrero-Florencio, Francesc</creator><creator>Margetts, Lee</creator><creator>Sales, Erika</creator><creator>Xie, Shuqiao</creator><creator>Manda, Krishnagoud</creator><creator>Pankaj, Pankaj</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201608</creationdate><title>Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach</title><author>Levrero-Florencio, Francesc ; Margetts, Lee ; Sales, Erika ; Xie, Shuqiao ; Manda, Krishnagoud ; Pankaj, Pankaj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-55831111bcf318b9518a05593bb32b40eacae61d94db9284267e402163db64413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anisotropic Material</topic><topic>Anisotropy</topic><topic>Biomechanical Phenomena</topic><topic>Bones</topic><topic>Cancellous Bone - physiology</topic><topic>Computer simulation</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Finite Elements</topic><topic>Homogenizing</topic><topic>Humans</topic><topic>Multiscale Modelling</topic><topic>Nonlinearity</topic><topic>Shear</topic><topic>Strain</topic><topic>Stress, Mechanical</topic><topic>Trabecular Bone</topic><topic>X-Ray Microtomography</topic><topic>Yield Surface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levrero-Florencio, Francesc</creatorcontrib><creatorcontrib>Margetts, Lee</creatorcontrib><creatorcontrib>Sales, Erika</creatorcontrib><creatorcontrib>Xie, Shuqiao</creatorcontrib><creatorcontrib>Manda, Krishnagoud</creatorcontrib><creatorcontrib>Pankaj, Pankaj</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levrero-Florencio, Francesc</au><au>Margetts, Lee</au><au>Sales, Erika</au><au>Xie, Shuqiao</au><au>Manda, Krishnagoud</au><au>Pankaj, Pankaj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2016-08</date><risdate>2016</risdate><volume>61</volume><spage>384</spage><epage>396</epage><pages>384-396</pages><issn>1751-6161</issn><eissn>1878-0180</eissn><abstract>Computational homogenisation approaches using high resolution images and finite element (FE) modelling have been extensively employed to evaluate the anisotropic elastic properties of trabecular bone. The aim of this study was to extend its application to characterise the macroscopic yield behaviour of trabecular bone. Twenty trabecular bone samples were scanned using a micro-computed tomography device, converted to voxelised FE meshes and subjected to 160 load cases each (to define a homogenised multiaxial yield surface which represents several possible strain combinations). Simulations were carried out using a parallel code developed in-house. The nonlinear algorithms included both geometrical and material nonlinearities. The study found that for tension-tension and compression-compression regimes in normal strain space, the yield strains have an isotropic behaviour. However, in the tension-compression quadrants, pure shear and combined normal-shear planes, the macroscopic strain norms at yield have a relatively large variation. Also, our treatment of clockwise and counter-clockwise shears as separate loading cases showed that the differences in these two directions cannot be ignored. A quadric yield surface, used to evaluate the goodness of fit, showed that an isotropic criterion adequately represents yield in strain space though errors with orthotropic and anisotropic criteria are slightly smaller. Consequently, although the isotropic yield surface presents itself as the most suitable assumption, it may not work well for all load cases. This work provides a comprehensive assessment of material symmetries of trabecular bone at the macroscale and describes in detail its macroscopic yield and its underlying microscopic mechanics.
•Trabecular bone yield strains are almost independent of fabric and BV/TV.•Its yield behaviour in strain space can be safely assumed to be isotropic.•Yield response of bone in shear indicates an asymmetry.•An eccentric-ellipsoid may adequately represent the macroscopic yield of trabecular bone.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>27108348</pmid><doi>10.1016/j.jmbbm.2016.04.008</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-6161 |
ispartof | Journal of the mechanical behavior of biomedical materials, 2016-08, Vol.61, p.384-396 |
issn | 1751-6161 1878-0180 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825546541 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Anisotropic Material Anisotropy Biomechanical Phenomena Bones Cancellous Bone - physiology Computer simulation Finite Element Analysis Finite element method Finite Elements Homogenizing Humans Multiscale Modelling Nonlinearity Shear Strain Stress, Mechanical Trabecular Bone X-Ray Microtomography Yield Surface |
title | Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T21%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20macroscopic%20yield%20behaviour%20of%20trabecular%20bone%20using%20a%20nonlinear%20homogenisation%20approach&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Levrero-Florencio,%20Francesc&rft.date=2016-08&rft.volume=61&rft.spage=384&rft.epage=396&rft.pages=384-396&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2016.04.008&rft_dat=%3Cproquest_cross%3E1799213537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799213537&rft_id=info:pmid/27108348&rft_els_id=S1751616116300728&rfr_iscdi=true |