Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach

Computational homogenisation approaches using high resolution images and finite element (FE) modelling have been extensively employed to evaluate the anisotropic elastic properties of trabecular bone. The aim of this study was to extend its application to characterise the macroscopic yield behaviour...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2016-08, Vol.61, p.384-396
Hauptverfasser: Levrero-Florencio, Francesc, Margetts, Lee, Sales, Erika, Xie, Shuqiao, Manda, Krishnagoud, Pankaj, Pankaj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 396
container_issue
container_start_page 384
container_title Journal of the mechanical behavior of biomedical materials
container_volume 61
creator Levrero-Florencio, Francesc
Margetts, Lee
Sales, Erika
Xie, Shuqiao
Manda, Krishnagoud
Pankaj, Pankaj
description Computational homogenisation approaches using high resolution images and finite element (FE) modelling have been extensively employed to evaluate the anisotropic elastic properties of trabecular bone. The aim of this study was to extend its application to characterise the macroscopic yield behaviour of trabecular bone. Twenty trabecular bone samples were scanned using a micro-computed tomography device, converted to voxelised FE meshes and subjected to 160 load cases each (to define a homogenised multiaxial yield surface which represents several possible strain combinations). Simulations were carried out using a parallel code developed in-house. The nonlinear algorithms included both geometrical and material nonlinearities. The study found that for tension-tension and compression-compression regimes in normal strain space, the yield strains have an isotropic behaviour. However, in the tension-compression quadrants, pure shear and combined normal-shear planes, the macroscopic strain norms at yield have a relatively large variation. Also, our treatment of clockwise and counter-clockwise shears as separate loading cases showed that the differences in these two directions cannot be ignored. A quadric yield surface, used to evaluate the goodness of fit, showed that an isotropic criterion adequately represents yield in strain space though errors with orthotropic and anisotropic criteria are slightly smaller. Consequently, although the isotropic yield surface presents itself as the most suitable assumption, it may not work well for all load cases. This work provides a comprehensive assessment of material symmetries of trabecular bone at the macroscale and describes in detail its macroscopic yield and its underlying microscopic mechanics. •Trabecular bone yield strains are almost independent of fabric and BV/TV.•Its yield behaviour in strain space can be safely assumed to be isotropic.•Yield response of bone in shear indicates an asymmetry.•An eccentric-ellipsoid may adequately represent the macroscopic yield of trabecular bone.
doi_str_mv 10.1016/j.jmbbm.2016.04.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825546541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751616116300728</els_id><sourcerecordid>1799213537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-55831111bcf318b9518a05593bb32b40eacae61d94db9284267e402163db64413</originalsourceid><addsrcrecordid>eNqNkUtr3DAUhUVpaNIkv6BQtOzGrq71sLzoooT0AYFumrWQ5DszGmxpKtkD-ffRdNIuS7WRrvjOPXAOIe-AtcBAfdy3-9m5ue3q0DLRMqZfkSvQvW4YaPa6vnsJjQIFl-RtKXvGVGX0G3LZ9cA0F_qKbO-PdlrtEuKWLjuks_U5FZ8OwdOngNNIHe7sMaQ107ShS7YO_TrZTF2KSNdyEloaU5xCxPq9S3PaYgyl7kyR2sMhJ-t3N-RiY6eCty_3NXn8cv_z7lvz8OPr97vPD40XvF8aKTWHepzfcNBukKAtk3LgzvHOCYbWW1QwDmJ0Q6dFp3oUrAPFR6eEAH5NPpz3VttfK5bFzKF4nCYbMa3FgO6kFEr-D9oPQwdc8r6i_IyewikZN-aQw2zzkwFmTmWYvfldhjmVYZgwNeiqev9isLoZx7-aP-lX4NMZwJrIMWA2xQeMHseQ0S9mTOGfBs8_sZwB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799213537</pqid></control><display><type>article</type><title>Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Levrero-Florencio, Francesc ; Margetts, Lee ; Sales, Erika ; Xie, Shuqiao ; Manda, Krishnagoud ; Pankaj, Pankaj</creator><creatorcontrib>Levrero-Florencio, Francesc ; Margetts, Lee ; Sales, Erika ; Xie, Shuqiao ; Manda, Krishnagoud ; Pankaj, Pankaj</creatorcontrib><description>Computational homogenisation approaches using high resolution images and finite element (FE) modelling have been extensively employed to evaluate the anisotropic elastic properties of trabecular bone. The aim of this study was to extend its application to characterise the macroscopic yield behaviour of trabecular bone. Twenty trabecular bone samples were scanned using a micro-computed tomography device, converted to voxelised FE meshes and subjected to 160 load cases each (to define a homogenised multiaxial yield surface which represents several possible strain combinations). Simulations were carried out using a parallel code developed in-house. The nonlinear algorithms included both geometrical and material nonlinearities. The study found that for tension-tension and compression-compression regimes in normal strain space, the yield strains have an isotropic behaviour. However, in the tension-compression quadrants, pure shear and combined normal-shear planes, the macroscopic strain norms at yield have a relatively large variation. Also, our treatment of clockwise and counter-clockwise shears as separate loading cases showed that the differences in these two directions cannot be ignored. A quadric yield surface, used to evaluate the goodness of fit, showed that an isotropic criterion adequately represents yield in strain space though errors with orthotropic and anisotropic criteria are slightly smaller. Consequently, although the isotropic yield surface presents itself as the most suitable assumption, it may not work well for all load cases. This work provides a comprehensive assessment of material symmetries of trabecular bone at the macroscale and describes in detail its macroscopic yield and its underlying microscopic mechanics. •Trabecular bone yield strains are almost independent of fabric and BV/TV.•Its yield behaviour in strain space can be safely assumed to be isotropic.•Yield response of bone in shear indicates an asymmetry.•An eccentric-ellipsoid may adequately represent the macroscopic yield of trabecular bone.</description><identifier>ISSN: 1751-6161</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2016.04.008</identifier><identifier>PMID: 27108348</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Anisotropic Material ; Anisotropy ; Biomechanical Phenomena ; Bones ; Cancellous Bone - physiology ; Computer simulation ; Finite Element Analysis ; Finite element method ; Finite Elements ; Homogenizing ; Humans ; Multiscale Modelling ; Nonlinearity ; Shear ; Strain ; Stress, Mechanical ; Trabecular Bone ; X-Ray Microtomography ; Yield Surface</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2016-08, Vol.61, p.384-396</ispartof><rights>2016 The Authors</rights><rights>Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-55831111bcf318b9518a05593bb32b40eacae61d94db9284267e402163db64413</citedby><cites>FETCH-LOGICAL-c437t-55831111bcf318b9518a05593bb32b40eacae61d94db9284267e402163db64413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1751616116300728$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27108348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Levrero-Florencio, Francesc</creatorcontrib><creatorcontrib>Margetts, Lee</creatorcontrib><creatorcontrib>Sales, Erika</creatorcontrib><creatorcontrib>Xie, Shuqiao</creatorcontrib><creatorcontrib>Manda, Krishnagoud</creatorcontrib><creatorcontrib>Pankaj, Pankaj</creatorcontrib><title>Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>Computational homogenisation approaches using high resolution images and finite element (FE) modelling have been extensively employed to evaluate the anisotropic elastic properties of trabecular bone. The aim of this study was to extend its application to characterise the macroscopic yield behaviour of trabecular bone. Twenty trabecular bone samples were scanned using a micro-computed tomography device, converted to voxelised FE meshes and subjected to 160 load cases each (to define a homogenised multiaxial yield surface which represents several possible strain combinations). Simulations were carried out using a parallel code developed in-house. The nonlinear algorithms included both geometrical and material nonlinearities. The study found that for tension-tension and compression-compression regimes in normal strain space, the yield strains have an isotropic behaviour. However, in the tension-compression quadrants, pure shear and combined normal-shear planes, the macroscopic strain norms at yield have a relatively large variation. Also, our treatment of clockwise and counter-clockwise shears as separate loading cases showed that the differences in these two directions cannot be ignored. A quadric yield surface, used to evaluate the goodness of fit, showed that an isotropic criterion adequately represents yield in strain space though errors with orthotropic and anisotropic criteria are slightly smaller. Consequently, although the isotropic yield surface presents itself as the most suitable assumption, it may not work well for all load cases. This work provides a comprehensive assessment of material symmetries of trabecular bone at the macroscale and describes in detail its macroscopic yield and its underlying microscopic mechanics. •Trabecular bone yield strains are almost independent of fabric and BV/TV.•Its yield behaviour in strain space can be safely assumed to be isotropic.•Yield response of bone in shear indicates an asymmetry.•An eccentric-ellipsoid may adequately represent the macroscopic yield of trabecular bone.</description><subject>Anisotropic Material</subject><subject>Anisotropy</subject><subject>Biomechanical Phenomena</subject><subject>Bones</subject><subject>Cancellous Bone - physiology</subject><subject>Computer simulation</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Finite Elements</subject><subject>Homogenizing</subject><subject>Humans</subject><subject>Multiscale Modelling</subject><subject>Nonlinearity</subject><subject>Shear</subject><subject>Strain</subject><subject>Stress, Mechanical</subject><subject>Trabecular Bone</subject><subject>X-Ray Microtomography</subject><subject>Yield Surface</subject><issn>1751-6161</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtr3DAUhUVpaNIkv6BQtOzGrq71sLzoooT0AYFumrWQ5DszGmxpKtkD-ffRdNIuS7WRrvjOPXAOIe-AtcBAfdy3-9m5ue3q0DLRMqZfkSvQvW4YaPa6vnsJjQIFl-RtKXvGVGX0G3LZ9cA0F_qKbO-PdlrtEuKWLjuks_U5FZ8OwdOngNNIHe7sMaQ107ShS7YO_TrZTF2KSNdyEloaU5xCxPq9S3PaYgyl7kyR2sMhJ-t3N-RiY6eCty_3NXn8cv_z7lvz8OPr97vPD40XvF8aKTWHepzfcNBukKAtk3LgzvHOCYbWW1QwDmJ0Q6dFp3oUrAPFR6eEAH5NPpz3VttfK5bFzKF4nCYbMa3FgO6kFEr-D9oPQwdc8r6i_IyewikZN-aQw2zzkwFmTmWYvfldhjmVYZgwNeiqev9isLoZx7-aP-lX4NMZwJrIMWA2xQeMHseQ0S9mTOGfBs8_sZwB</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Levrero-Florencio, Francesc</creator><creator>Margetts, Lee</creator><creator>Sales, Erika</creator><creator>Xie, Shuqiao</creator><creator>Manda, Krishnagoud</creator><creator>Pankaj, Pankaj</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201608</creationdate><title>Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach</title><author>Levrero-Florencio, Francesc ; Margetts, Lee ; Sales, Erika ; Xie, Shuqiao ; Manda, Krishnagoud ; Pankaj, Pankaj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-55831111bcf318b9518a05593bb32b40eacae61d94db9284267e402163db64413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anisotropic Material</topic><topic>Anisotropy</topic><topic>Biomechanical Phenomena</topic><topic>Bones</topic><topic>Cancellous Bone - physiology</topic><topic>Computer simulation</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Finite Elements</topic><topic>Homogenizing</topic><topic>Humans</topic><topic>Multiscale Modelling</topic><topic>Nonlinearity</topic><topic>Shear</topic><topic>Strain</topic><topic>Stress, Mechanical</topic><topic>Trabecular Bone</topic><topic>X-Ray Microtomography</topic><topic>Yield Surface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levrero-Florencio, Francesc</creatorcontrib><creatorcontrib>Margetts, Lee</creatorcontrib><creatorcontrib>Sales, Erika</creatorcontrib><creatorcontrib>Xie, Shuqiao</creatorcontrib><creatorcontrib>Manda, Krishnagoud</creatorcontrib><creatorcontrib>Pankaj, Pankaj</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levrero-Florencio, Francesc</au><au>Margetts, Lee</au><au>Sales, Erika</au><au>Xie, Shuqiao</au><au>Manda, Krishnagoud</au><au>Pankaj, Pankaj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2016-08</date><risdate>2016</risdate><volume>61</volume><spage>384</spage><epage>396</epage><pages>384-396</pages><issn>1751-6161</issn><eissn>1878-0180</eissn><abstract>Computational homogenisation approaches using high resolution images and finite element (FE) modelling have been extensively employed to evaluate the anisotropic elastic properties of trabecular bone. The aim of this study was to extend its application to characterise the macroscopic yield behaviour of trabecular bone. Twenty trabecular bone samples were scanned using a micro-computed tomography device, converted to voxelised FE meshes and subjected to 160 load cases each (to define a homogenised multiaxial yield surface which represents several possible strain combinations). Simulations were carried out using a parallel code developed in-house. The nonlinear algorithms included both geometrical and material nonlinearities. The study found that for tension-tension and compression-compression regimes in normal strain space, the yield strains have an isotropic behaviour. However, in the tension-compression quadrants, pure shear and combined normal-shear planes, the macroscopic strain norms at yield have a relatively large variation. Also, our treatment of clockwise and counter-clockwise shears as separate loading cases showed that the differences in these two directions cannot be ignored. A quadric yield surface, used to evaluate the goodness of fit, showed that an isotropic criterion adequately represents yield in strain space though errors with orthotropic and anisotropic criteria are slightly smaller. Consequently, although the isotropic yield surface presents itself as the most suitable assumption, it may not work well for all load cases. This work provides a comprehensive assessment of material symmetries of trabecular bone at the macroscale and describes in detail its macroscopic yield and its underlying microscopic mechanics. •Trabecular bone yield strains are almost independent of fabric and BV/TV.•Its yield behaviour in strain space can be safely assumed to be isotropic.•Yield response of bone in shear indicates an asymmetry.•An eccentric-ellipsoid may adequately represent the macroscopic yield of trabecular bone.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>27108348</pmid><doi>10.1016/j.jmbbm.2016.04.008</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-6161
ispartof Journal of the mechanical behavior of biomedical materials, 2016-08, Vol.61, p.384-396
issn 1751-6161
1878-0180
language eng
recordid cdi_proquest_miscellaneous_1825546541
source MEDLINE; Elsevier ScienceDirect Journals
subjects Anisotropic Material
Anisotropy
Biomechanical Phenomena
Bones
Cancellous Bone - physiology
Computer simulation
Finite Element Analysis
Finite element method
Finite Elements
Homogenizing
Humans
Multiscale Modelling
Nonlinearity
Shear
Strain
Stress, Mechanical
Trabecular Bone
X-Ray Microtomography
Yield Surface
title Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T21%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20macroscopic%20yield%20behaviour%20of%20trabecular%20bone%20using%20a%20nonlinear%20homogenisation%20approach&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Levrero-Florencio,%20Francesc&rft.date=2016-08&rft.volume=61&rft.spage=384&rft.epage=396&rft.pages=384-396&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2016.04.008&rft_dat=%3Cproquest_cross%3E1799213537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799213537&rft_id=info:pmid/27108348&rft_els_id=S1751616116300728&rfr_iscdi=true