A two-stage image segmentation via global and local region active contours

Based on popular active contours, this paper proposes a novel two-stage image segmentation method, which incorporates the global and local image region fitting energies. In the first stage, according to the global region active contour, we preliminarily segment the image by globally using the Gaussi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2016-09, Vol.205, p.130-140
Hauptverfasser: Wang, Hui, Huang, Ting-Zhu, Xu, Zhi, Wang, Yugang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140
container_issue
container_start_page 130
container_title Neurocomputing (Amsterdam)
container_volume 205
creator Wang, Hui
Huang, Ting-Zhu
Xu, Zhi
Wang, Yugang
description Based on popular active contours, this paper proposes a novel two-stage image segmentation method, which incorporates the global and local image region fitting energies. In the first stage, according to the global region active contour, we preliminarily segment the image by globally using the Gaussian distribution, which can rapidly get a coarse segmentation result. Subsequently, by employing a window function, we further segment the image by using the local region active contour, where we use the final active contour of the first stage as the initialization. Compared with the first stage, the local object details are accurately segmented in the second stage, which can be considered as an accurate segmentation result. Due to the suitable initialization from the first stage, the second stage works well in accurately segmenting the image, especially in local details. To regularize the level set function, we introduce a Laplace operator, which efficiently eliminates the expensive re-initialization process of traditional level set methods. Compared with the state-of-the-art methods, experiment results demonstrate the effectiveness and performance of the proposed method with applications to synthetical and real-world images, which usually contain noise, blurry boundaries, and intensity inhomogeneities.
doi_str_mv 10.1016/j.neucom.2016.03.050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825546056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231216302600</els_id><sourcerecordid>1825546056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-902c2ad2e6be1d94ec3d202abd8fde5c371d7e307a5c95b9f82c16a30eb00c0b3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-Axddumm9SSZ9bIRh8MmAG12HNLktGdpmTNIR_70tde3mPrjnHjgfIbcUMgo0vz9kA47a9Rmbtgx4BgLOyIqWBUtLVubnZAUVEynjlF2SqxAOALSgrFqRt20Sv10aomoxsf1cA7Y9DlFF64bkZFXSdq5WXaIGk3ROT5PHdr4pHe0JE-2G6EYfrslFo7qAN399TT6fHj92L-n-_fl1t92nmvMqphUwzZRhmNdITbVBzQ0DpmpTNgaF5gU1BXIolNCVqKumZJrmigPWABpqviZ3i-_Ru68RQ5S9DRq7Tg3oxiBpyYTY5CDySbpZpNq7EDw28uinkP5HUpAzOnmQCzo5o5PA5YRuentY3nCKcbLoZdAWB43GetRRGmf_N_gF2Qh6Lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825546056</pqid></control><display><type>article</type><title>A two-stage image segmentation via global and local region active contours</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Hui ; Huang, Ting-Zhu ; Xu, Zhi ; Wang, Yugang</creator><creatorcontrib>Wang, Hui ; Huang, Ting-Zhu ; Xu, Zhi ; Wang, Yugang</creatorcontrib><description>Based on popular active contours, this paper proposes a novel two-stage image segmentation method, which incorporates the global and local image region fitting energies. In the first stage, according to the global region active contour, we preliminarily segment the image by globally using the Gaussian distribution, which can rapidly get a coarse segmentation result. Subsequently, by employing a window function, we further segment the image by using the local region active contour, where we use the final active contour of the first stage as the initialization. Compared with the first stage, the local object details are accurately segmented in the second stage, which can be considered as an accurate segmentation result. Due to the suitable initialization from the first stage, the second stage works well in accurately segmenting the image, especially in local details. To regularize the level set function, we introduce a Laplace operator, which efficiently eliminates the expensive re-initialization process of traditional level set methods. Compared with the state-of-the-art methods, experiment results demonstrate the effectiveness and performance of the proposed method with applications to synthetical and real-world images, which usually contain noise, blurry boundaries, and intensity inhomogeneities.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2016.03.050</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Active contours ; Boundaries ; Contours ; Image segmentation ; Inhomogeneities ; Level set method ; Segmentation ; Segments ; State of the art ; Two-stage</subject><ispartof>Neurocomputing (Amsterdam), 2016-09, Vol.205, p.130-140</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-902c2ad2e6be1d94ec3d202abd8fde5c371d7e307a5c95b9f82c16a30eb00c0b3</citedby><cites>FETCH-LOGICAL-c339t-902c2ad2e6be1d94ec3d202abd8fde5c371d7e307a5c95b9f82c16a30eb00c0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neucom.2016.03.050$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Huang, Ting-Zhu</creatorcontrib><creatorcontrib>Xu, Zhi</creatorcontrib><creatorcontrib>Wang, Yugang</creatorcontrib><title>A two-stage image segmentation via global and local region active contours</title><title>Neurocomputing (Amsterdam)</title><description>Based on popular active contours, this paper proposes a novel two-stage image segmentation method, which incorporates the global and local image region fitting energies. In the first stage, according to the global region active contour, we preliminarily segment the image by globally using the Gaussian distribution, which can rapidly get a coarse segmentation result. Subsequently, by employing a window function, we further segment the image by using the local region active contour, where we use the final active contour of the first stage as the initialization. Compared with the first stage, the local object details are accurately segmented in the second stage, which can be considered as an accurate segmentation result. Due to the suitable initialization from the first stage, the second stage works well in accurately segmenting the image, especially in local details. To regularize the level set function, we introduce a Laplace operator, which efficiently eliminates the expensive re-initialization process of traditional level set methods. Compared with the state-of-the-art methods, experiment results demonstrate the effectiveness and performance of the proposed method with applications to synthetical and real-world images, which usually contain noise, blurry boundaries, and intensity inhomogeneities.</description><subject>Active contours</subject><subject>Boundaries</subject><subject>Contours</subject><subject>Image segmentation</subject><subject>Inhomogeneities</subject><subject>Level set method</subject><subject>Segmentation</subject><subject>Segments</subject><subject>State of the art</subject><subject>Two-stage</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-Axddumm9SSZ9bIRh8MmAG12HNLktGdpmTNIR_70tde3mPrjnHjgfIbcUMgo0vz9kA47a9Rmbtgx4BgLOyIqWBUtLVubnZAUVEynjlF2SqxAOALSgrFqRt20Sv10aomoxsf1cA7Y9DlFF64bkZFXSdq5WXaIGk3ROT5PHdr4pHe0JE-2G6EYfrslFo7qAN399TT6fHj92L-n-_fl1t92nmvMqphUwzZRhmNdITbVBzQ0DpmpTNgaF5gU1BXIolNCVqKumZJrmigPWABpqviZ3i-_Ru68RQ5S9DRq7Tg3oxiBpyYTY5CDySbpZpNq7EDw28uinkP5HUpAzOnmQCzo5o5PA5YRuentY3nCKcbLoZdAWB43GetRRGmf_N_gF2Qh6Lg</recordid><startdate>20160912</startdate><enddate>20160912</enddate><creator>Wang, Hui</creator><creator>Huang, Ting-Zhu</creator><creator>Xu, Zhi</creator><creator>Wang, Yugang</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160912</creationdate><title>A two-stage image segmentation via global and local region active contours</title><author>Wang, Hui ; Huang, Ting-Zhu ; Xu, Zhi ; Wang, Yugang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-902c2ad2e6be1d94ec3d202abd8fde5c371d7e307a5c95b9f82c16a30eb00c0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Active contours</topic><topic>Boundaries</topic><topic>Contours</topic><topic>Image segmentation</topic><topic>Inhomogeneities</topic><topic>Level set method</topic><topic>Segmentation</topic><topic>Segments</topic><topic>State of the art</topic><topic>Two-stage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Huang, Ting-Zhu</creatorcontrib><creatorcontrib>Xu, Zhi</creatorcontrib><creatorcontrib>Wang, Yugang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hui</au><au>Huang, Ting-Zhu</au><au>Xu, Zhi</au><au>Wang, Yugang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-stage image segmentation via global and local region active contours</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2016-09-12</date><risdate>2016</risdate><volume>205</volume><spage>130</spage><epage>140</epage><pages>130-140</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>Based on popular active contours, this paper proposes a novel two-stage image segmentation method, which incorporates the global and local image region fitting energies. In the first stage, according to the global region active contour, we preliminarily segment the image by globally using the Gaussian distribution, which can rapidly get a coarse segmentation result. Subsequently, by employing a window function, we further segment the image by using the local region active contour, where we use the final active contour of the first stage as the initialization. Compared with the first stage, the local object details are accurately segmented in the second stage, which can be considered as an accurate segmentation result. Due to the suitable initialization from the first stage, the second stage works well in accurately segmenting the image, especially in local details. To regularize the level set function, we introduce a Laplace operator, which efficiently eliminates the expensive re-initialization process of traditional level set methods. Compared with the state-of-the-art methods, experiment results demonstrate the effectiveness and performance of the proposed method with applications to synthetical and real-world images, which usually contain noise, blurry boundaries, and intensity inhomogeneities.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2016.03.050</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2016-09, Vol.205, p.130-140
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_1825546056
source Access via ScienceDirect (Elsevier)
subjects Active contours
Boundaries
Contours
Image segmentation
Inhomogeneities
Level set method
Segmentation
Segments
State of the art
Two-stage
title A two-stage image segmentation via global and local region active contours
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-stage%20image%20segmentation%20via%20global%20and%20local%20region%20active%20contours&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Wang,%20Hui&rft.date=2016-09-12&rft.volume=205&rft.spage=130&rft.epage=140&rft.pages=130-140&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2016.03.050&rft_dat=%3Cproquest_cross%3E1825546056%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825546056&rft_id=info:pmid/&rft_els_id=S0925231216302600&rfr_iscdi=true