Numerical solutions of hyperbolic telegraph equation by using the Bessel functions of first kind and residual correction
In this study, a collocation method is presented to solve one-dimensional hyperbolic telegraph equation. The problem is given by hyperbolic telegraph equation under initial and boundary conditions. The method is based on the Bessel functions of the first kind. Using the collocation points and the op...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2016-09, Vol.287-288, p.83-93 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 93 |
---|---|
container_issue | |
container_start_page | 83 |
container_title | Applied mathematics and computation |
container_volume | 287-288 |
creator | Yuezbasi, Suayip |
description | In this study, a collocation method is presented to solve one-dimensional hyperbolic telegraph equation. The problem is given by hyperbolic telegraph equation under initial and boundary conditions. The method is based on the Bessel functions of the first kind. Using the collocation points and the operational matrices of derivatives, we reduce the problem to a set of linear algebraic equations. The determined coefficients from this system give the coefficients of the approximate solution. Also, an error estimation method is presented for the considered problem and the method. By using the residual function and the original problem, an error problem is constructed and thus the error function is estimated. By aid of the estimated function, the approximated solution is improved. Numerical examples are given to demonstrate the validity and applicability of the proposed method and also, the comparisons are made with the known results. |
doi_str_mv | 10.1016/j.amc.2016.04.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825543518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300316302867</els_id><sourcerecordid>1825543518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-e38629c54e4c1f76c98e7fa5b55e81c5af0f6c441211a19f71c133aa5e2003873</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRS0EEiHwAXQuaXbxrO19iAoiXlIEDdSW44wTh806sXcR-XscgigprHFxz4zuIeQSWA4MyutVrtcmL9I3ZyJnvDwiI6grnslSNMdkxFhTZpwxfkrOYlwxxqoSxIh8vQxrDM7olkbfDr3zXaTe0uVug2HmW2dojy0ugt4sKW4HvU_Q2Y4O0XUL2i-R3mGM2FI7dOYPty7Enn64bk51egGjmw_phvEh4E_snJxY3Ua8-J1j8v5w_zZ5yqavj8-T22lmOGd9hrwui8ZIgcKArUrT1FhZLWdSYg1GastsaYSAAkBDYyswwLnWEotUNgkYk6vD3k3w2wFjr9YuGmxb3aEfooK6kFJwCXWKwiFqgo8xoFWb4NY67BQwtbesVipZVnvLigmVLCfm5sBg6vDpMKhoHHYG525fVM29-4f-Bpd7hx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825543518</pqid></control><display><type>article</type><title>Numerical solutions of hyperbolic telegraph equation by using the Bessel functions of first kind and residual correction</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yuezbasi, Suayip</creator><creatorcontrib>Yuezbasi, Suayip</creatorcontrib><description>In this study, a collocation method is presented to solve one-dimensional hyperbolic telegraph equation. The problem is given by hyperbolic telegraph equation under initial and boundary conditions. The method is based on the Bessel functions of the first kind. Using the collocation points and the operational matrices of derivatives, we reduce the problem to a set of linear algebraic equations. The determined coefficients from this system give the coefficients of the approximate solution. Also, an error estimation method is presented for the considered problem and the method. By using the residual function and the original problem, an error problem is constructed and thus the error function is estimated. By aid of the estimated function, the approximated solution is improved. Numerical examples are given to demonstrate the validity and applicability of the proposed method and also, the comparisons are made with the known results.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2016.04.036</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Approximation ; Bessel collocation method ; Bessel functions ; Bessel functions of first kind ; Collocation points ; Derivatives ; Error analysis ; Error functions ; Hyperbolic telegraph equation ; Mathematical analysis ; Mathematical models ; Matrices (mathematics) ; Residual correction ; Residual function</subject><ispartof>Applied mathematics and computation, 2016-09, Vol.287-288, p.83-93</ispartof><rights>2016 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-e38629c54e4c1f76c98e7fa5b55e81c5af0f6c441211a19f71c133aa5e2003873</citedby><cites>FETCH-LOGICAL-c330t-e38629c54e4c1f76c98e7fa5b55e81c5af0f6c441211a19f71c133aa5e2003873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2016.04.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yuezbasi, Suayip</creatorcontrib><title>Numerical solutions of hyperbolic telegraph equation by using the Bessel functions of first kind and residual correction</title><title>Applied mathematics and computation</title><description>In this study, a collocation method is presented to solve one-dimensional hyperbolic telegraph equation. The problem is given by hyperbolic telegraph equation under initial and boundary conditions. The method is based on the Bessel functions of the first kind. Using the collocation points and the operational matrices of derivatives, we reduce the problem to a set of linear algebraic equations. The determined coefficients from this system give the coefficients of the approximate solution. Also, an error estimation method is presented for the considered problem and the method. By using the residual function and the original problem, an error problem is constructed and thus the error function is estimated. By aid of the estimated function, the approximated solution is improved. Numerical examples are given to demonstrate the validity and applicability of the proposed method and also, the comparisons are made with the known results.</description><subject>Approximation</subject><subject>Bessel collocation method</subject><subject>Bessel functions</subject><subject>Bessel functions of first kind</subject><subject>Collocation points</subject><subject>Derivatives</subject><subject>Error analysis</subject><subject>Error functions</subject><subject>Hyperbolic telegraph equation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Matrices (mathematics)</subject><subject>Residual correction</subject><subject>Residual function</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOAzEQRS0EEiHwAXQuaXbxrO19iAoiXlIEDdSW44wTh806sXcR-XscgigprHFxz4zuIeQSWA4MyutVrtcmL9I3ZyJnvDwiI6grnslSNMdkxFhTZpwxfkrOYlwxxqoSxIh8vQxrDM7olkbfDr3zXaTe0uVug2HmW2dojy0ugt4sKW4HvU_Q2Y4O0XUL2i-R3mGM2FI7dOYPty7Enn64bk51egGjmw_phvEh4E_snJxY3Ua8-J1j8v5w_zZ5yqavj8-T22lmOGd9hrwui8ZIgcKArUrT1FhZLWdSYg1GastsaYSAAkBDYyswwLnWEotUNgkYk6vD3k3w2wFjr9YuGmxb3aEfooK6kFJwCXWKwiFqgo8xoFWb4NY67BQwtbesVipZVnvLigmVLCfm5sBg6vDpMKhoHHYG525fVM29-4f-Bpd7hx4</recordid><startdate>20160905</startdate><enddate>20160905</enddate><creator>Yuezbasi, Suayip</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160905</creationdate><title>Numerical solutions of hyperbolic telegraph equation by using the Bessel functions of first kind and residual correction</title><author>Yuezbasi, Suayip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-e38629c54e4c1f76c98e7fa5b55e81c5af0f6c441211a19f71c133aa5e2003873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Bessel collocation method</topic><topic>Bessel functions</topic><topic>Bessel functions of first kind</topic><topic>Collocation points</topic><topic>Derivatives</topic><topic>Error analysis</topic><topic>Error functions</topic><topic>Hyperbolic telegraph equation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Matrices (mathematics)</topic><topic>Residual correction</topic><topic>Residual function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuezbasi, Suayip</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuezbasi, Suayip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solutions of hyperbolic telegraph equation by using the Bessel functions of first kind and residual correction</atitle><jtitle>Applied mathematics and computation</jtitle><date>2016-09-05</date><risdate>2016</risdate><volume>287-288</volume><spage>83</spage><epage>93</epage><pages>83-93</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>In this study, a collocation method is presented to solve one-dimensional hyperbolic telegraph equation. The problem is given by hyperbolic telegraph equation under initial and boundary conditions. The method is based on the Bessel functions of the first kind. Using the collocation points and the operational matrices of derivatives, we reduce the problem to a set of linear algebraic equations. The determined coefficients from this system give the coefficients of the approximate solution. Also, an error estimation method is presented for the considered problem and the method. By using the residual function and the original problem, an error problem is constructed and thus the error function is estimated. By aid of the estimated function, the approximated solution is improved. Numerical examples are given to demonstrate the validity and applicability of the proposed method and also, the comparisons are made with the known results.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2016.04.036</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2016-09, Vol.287-288, p.83-93 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825543518 |
source | Access via ScienceDirect (Elsevier) |
subjects | Approximation Bessel collocation method Bessel functions Bessel functions of first kind Collocation points Derivatives Error analysis Error functions Hyperbolic telegraph equation Mathematical analysis Mathematical models Matrices (mathematics) Residual correction Residual function |
title | Numerical solutions of hyperbolic telegraph equation by using the Bessel functions of first kind and residual correction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A53%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solutions%20of%20hyperbolic%20telegraph%20equation%20by%20using%20the%20Bessel%20functions%20of%20first%20kind%20and%20residual%20correction&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Yuezbasi,%20Suayip&rft.date=2016-09-05&rft.volume=287-288&rft.spage=83&rft.epage=93&rft.pages=83-93&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2016.04.036&rft_dat=%3Cproquest_cross%3E1825543518%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825543518&rft_id=info:pmid/&rft_els_id=S0096300316302867&rfr_iscdi=true |