Matrix and Tensor Based Methods for Missing Data Estimation in Large Traffic Networks

Intelligent transportation systems (ITSs) gather information about traffic conditions by collecting data from a wide range of on-ground sensors. The collected data usually suffer from irregular spatial and temporal resolution. Consequently, missing data is a common problem faced by ITSs. In this pap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2016-07, Vol.17 (7), p.1816-1825
Hauptverfasser: Asif, Muhammad Tayyab, Mitrovic, Nikola, Dauwels, Justin, Jaillet, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1825
container_issue 7
container_start_page 1816
container_title IEEE transactions on intelligent transportation systems
container_volume 17
creator Asif, Muhammad Tayyab
Mitrovic, Nikola
Dauwels, Justin
Jaillet, Patrick
description Intelligent transportation systems (ITSs) gather information about traffic conditions by collecting data from a wide range of on-ground sensors. The collected data usually suffer from irregular spatial and temporal resolution. Consequently, missing data is a common problem faced by ITSs. In this paper, we consider the problem of missing data in large and diverse road networks. We propose various matrix and tensor based methods to estimate these missing values by extracting common traffic patterns in large road networks. To obtain these traffic patterns in the presence of missing data, we apply fixed-point continuation with approximate singular value decomposition, canonical polyadic decomposition, least squares, and variational Bayesian principal component analysis. For analysis, we consider different road networks, each of which is composed of around 1500 road segments. We evaluate the performance of these methods in terms of estimation accuracy, variance of the data set, and the bias imparted by these methods.
doi_str_mv 10.1109/TITS.2015.2507259
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825542674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7384738</ieee_id><sourcerecordid>4102728651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-4c12b60a66452ecf7c500eeeecef849230562c16e8e9e2ef01b34064912ea7893</originalsourceid><addsrcrecordid>eNpdkMFOAyEQhjdGE2v1AYwXEi9etgIL7HLUWrVJqwe3Z0LpbKW2SwUa9e1l08aDJITJ5JvJz5dllwQPCMHyth7XbwOKCR9QjkvK5VHWI5xXOcZEHHc1ZbnEHJ9mZyGsUpdxQnrZbKqjt99ItwtUQxucR_c6wAJNIb67RUBN6kxtCLZdogcdNRqFaDc6Wtci26KJ9ktAtddNYw16gfjl_Ec4z04avQ5wcXj72exxVA-f88nr03h4N8lNIWnMmSF0LrAWgnEKpikNxxjSMdBUTNICc0ENEVCBBAoNJvOCYcEkoaDLShb97Ga_d-vd5w5CVBsbDKzXugW3C4pUlHNGRckSev0PXbmdb1M6RUopZZWMFIkie8p4F4KHRm19-q3_UQSrTrTqRKtOtDqITjNX-xmbkv_xZVGxdItfO3l4NA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799980143</pqid></control><display><type>article</type><title>Matrix and Tensor Based Methods for Missing Data Estimation in Large Traffic Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Asif, Muhammad Tayyab ; Mitrovic, Nikola ; Dauwels, Justin ; Jaillet, Patrick</creator><creatorcontrib>Asif, Muhammad Tayyab ; Mitrovic, Nikola ; Dauwels, Justin ; Jaillet, Patrick</creatorcontrib><description>Intelligent transportation systems (ITSs) gather information about traffic conditions by collecting data from a wide range of on-ground sensors. The collected data usually suffer from irregular spatial and temporal resolution. Consequently, missing data is a common problem faced by ITSs. In this paper, we consider the problem of missing data in large and diverse road networks. We propose various matrix and tensor based methods to estimate these missing values by extracting common traffic patterns in large road networks. To obtain these traffic patterns in the presence of missing data, we apply fixed-point continuation with approximate singular value decomposition, canonical polyadic decomposition, least squares, and variational Bayesian principal component analysis. For analysis, we consider different road networks, each of which is composed of around 1500 road segments. We evaluate the performance of these methods in terms of estimation accuracy, variance of the data set, and the bias imparted by these methods.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2015.2507259</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Estimation ; Intelligent transportation systems ; low-dimensional models ; Mathematical analysis ; Matrix decomposition ; Missing data ; Missing data estimation ; Principal component analysis ; Principal components analysis ; Roads ; Sensors ; Tensile stress ; Tensors ; Traffic ; Traffic engineering ; Traffic flow ; Transportation networks</subject><ispartof>IEEE transactions on intelligent transportation systems, 2016-07, Vol.17 (7), p.1816-1825</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-4c12b60a66452ecf7c500eeeecef849230562c16e8e9e2ef01b34064912ea7893</citedby><cites>FETCH-LOGICAL-c392t-4c12b60a66452ecf7c500eeeecef849230562c16e8e9e2ef01b34064912ea7893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7384738$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7384738$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Asif, Muhammad Tayyab</creatorcontrib><creatorcontrib>Mitrovic, Nikola</creatorcontrib><creatorcontrib>Dauwels, Justin</creatorcontrib><creatorcontrib>Jaillet, Patrick</creatorcontrib><title>Matrix and Tensor Based Methods for Missing Data Estimation in Large Traffic Networks</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Intelligent transportation systems (ITSs) gather information about traffic conditions by collecting data from a wide range of on-ground sensors. The collected data usually suffer from irregular spatial and temporal resolution. Consequently, missing data is a common problem faced by ITSs. In this paper, we consider the problem of missing data in large and diverse road networks. We propose various matrix and tensor based methods to estimate these missing values by extracting common traffic patterns in large road networks. To obtain these traffic patterns in the presence of missing data, we apply fixed-point continuation with approximate singular value decomposition, canonical polyadic decomposition, least squares, and variational Bayesian principal component analysis. For analysis, we consider different road networks, each of which is composed of around 1500 road segments. We evaluate the performance of these methods in terms of estimation accuracy, variance of the data set, and the bias imparted by these methods.</description><subject>Estimation</subject><subject>Intelligent transportation systems</subject><subject>low-dimensional models</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>Missing data</subject><subject>Missing data estimation</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>Roads</subject><subject>Sensors</subject><subject>Tensile stress</subject><subject>Tensors</subject><subject>Traffic</subject><subject>Traffic engineering</subject><subject>Traffic flow</subject><subject>Transportation networks</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMFOAyEQhjdGE2v1AYwXEi9etgIL7HLUWrVJqwe3Z0LpbKW2SwUa9e1l08aDJITJ5JvJz5dllwQPCMHyth7XbwOKCR9QjkvK5VHWI5xXOcZEHHc1ZbnEHJ9mZyGsUpdxQnrZbKqjt99ItwtUQxucR_c6wAJNIb67RUBN6kxtCLZdogcdNRqFaDc6Wtci26KJ9ktAtddNYw16gfjl_Ec4z04avQ5wcXj72exxVA-f88nr03h4N8lNIWnMmSF0LrAWgnEKpikNxxjSMdBUTNICc0ENEVCBBAoNJvOCYcEkoaDLShb97Ga_d-vd5w5CVBsbDKzXugW3C4pUlHNGRckSev0PXbmdb1M6RUopZZWMFIkie8p4F4KHRm19-q3_UQSrTrTqRKtOtDqITjNX-xmbkv_xZVGxdItfO3l4NA</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Asif, Muhammad Tayyab</creator><creator>Mitrovic, Nikola</creator><creator>Dauwels, Justin</creator><creator>Jaillet, Patrick</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20160701</creationdate><title>Matrix and Tensor Based Methods for Missing Data Estimation in Large Traffic Networks</title><author>Asif, Muhammad Tayyab ; Mitrovic, Nikola ; Dauwels, Justin ; Jaillet, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-4c12b60a66452ecf7c500eeeecef849230562c16e8e9e2ef01b34064912ea7893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Estimation</topic><topic>Intelligent transportation systems</topic><topic>low-dimensional models</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>Missing data</topic><topic>Missing data estimation</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>Roads</topic><topic>Sensors</topic><topic>Tensile stress</topic><topic>Tensors</topic><topic>Traffic</topic><topic>Traffic engineering</topic><topic>Traffic flow</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asif, Muhammad Tayyab</creatorcontrib><creatorcontrib>Mitrovic, Nikola</creatorcontrib><creatorcontrib>Dauwels, Justin</creatorcontrib><creatorcontrib>Jaillet, Patrick</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Asif, Muhammad Tayyab</au><au>Mitrovic, Nikola</au><au>Dauwels, Justin</au><au>Jaillet, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix and Tensor Based Methods for Missing Data Estimation in Large Traffic Networks</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>17</volume><issue>7</issue><spage>1816</spage><epage>1825</epage><pages>1816-1825</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Intelligent transportation systems (ITSs) gather information about traffic conditions by collecting data from a wide range of on-ground sensors. The collected data usually suffer from irregular spatial and temporal resolution. Consequently, missing data is a common problem faced by ITSs. In this paper, we consider the problem of missing data in large and diverse road networks. We propose various matrix and tensor based methods to estimate these missing values by extracting common traffic patterns in large road networks. To obtain these traffic patterns in the presence of missing data, we apply fixed-point continuation with approximate singular value decomposition, canonical polyadic decomposition, least squares, and variational Bayesian principal component analysis. For analysis, we consider different road networks, each of which is composed of around 1500 road segments. We evaluate the performance of these methods in terms of estimation accuracy, variance of the data set, and the bias imparted by these methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2015.2507259</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2016-07, Vol.17 (7), p.1816-1825
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_miscellaneous_1825542674
source IEEE Electronic Library (IEL)
subjects Estimation
Intelligent transportation systems
low-dimensional models
Mathematical analysis
Matrix decomposition
Missing data
Missing data estimation
Principal component analysis
Principal components analysis
Roads
Sensors
Tensile stress
Tensors
Traffic
Traffic engineering
Traffic flow
Transportation networks
title Matrix and Tensor Based Methods for Missing Data Estimation in Large Traffic Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A19%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix%20and%20Tensor%20Based%20Methods%20for%20Missing%20Data%20Estimation%20in%20Large%20Traffic%20Networks&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Asif,%20Muhammad%20Tayyab&rft.date=2016-07-01&rft.volume=17&rft.issue=7&rft.spage=1816&rft.epage=1825&rft.pages=1816-1825&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2015.2507259&rft_dat=%3Cproquest_RIE%3E4102728651%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799980143&rft_id=info:pmid/&rft_ieee_id=7384738&rfr_iscdi=true