Aerosol data assimilation using data from Himawari‐8, a next‐generation geostationary meteorological satellite

Himawari‐8, a next‐generation geostationary meteorological satellite, was launched on 7 October 2014 and became operational on 7 July 2015. The advanced imager on board Himawari‐8 is equipped with 16 observational bands (including three visible and three near‐infrared bands) that enable retrieval of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2016-06, Vol.43 (11), p.5886-5894
Hauptverfasser: Yumimoto, K., Nagao, T.M., Kikuchi, M., Sekiyama, T.T, Murakami, H., Tanaka, T.Y., Ogi, A., Irie, H., Khatri, P., Okumura, H., Arai, K., Morino, I., Uchino, O., Maki, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5894
container_issue 11
container_start_page 5886
container_title Geophysical research letters
container_volume 43
creator Yumimoto, K.
Nagao, T.M.
Kikuchi, M.
Sekiyama, T.T
Murakami, H.
Tanaka, T.Y.
Ogi, A.
Irie, H.
Khatri, P.
Okumura, H.
Arai, K.
Morino, I.
Uchino, O.
Maki, T.
description Himawari‐8, a next‐generation geostationary meteorological satellite, was launched on 7 October 2014 and became operational on 7 July 2015. The advanced imager on board Himawari‐8 is equipped with 16 observational bands (including three visible and three near‐infrared bands) that enable retrieval of full‐disk aerosol optical properties at 10 min intervals from geostationary (GEO) orbit. Here we show the first application of aerosol optical properties (AOPs) derived from Himawari‐8 data to aerosol data assimilation. Validation of the assimilation experiment by comparison with independent observations demonstrated successful modeling of continental pollution that was not predicted by simulation without assimilation and reduced overestimates of dust front concentrations. These promising results suggest that AOPs derived from Himawari‐8/9 and other planned GEO satellites will considerably improve forecasts of air quality, inverse modeling of emissions, and aerosol reanalysis through assimilation techniques. Key Points Next‐generation geostationary meteorological satellite Himawari‐8 launched on 7 October 2014 Himawari‐8 provides full‐disk aerosol optical properties at 10 min intervals from geostationary orbit Promising results of aerosol assimilation experiment on Himawari‐8 retrievals
doi_str_mv 10.1002/2016GL069298
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825541887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4103637791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5471-653cb8217ca739b47f90cf9bb8a3e317bd3bb942d486f48c850cb2c8f69dc4143</originalsourceid><addsrcrecordid>eNqN0ctKAzEUBuAgCtbLzgcYcOPC6sk9WRbRKhQE0fWQSTMlZWZSkynanY_gM_okRseFuCiu8hO-hJz8CJ1guMAA5JIAFtMZCE202kEjrBkbKwC5i0YAOmcixT46SGkJABQoHqE4cTGk0BRz05vCpORb35jeh65YJ98thv06hra49a15MdF_vL2r88IUnXvtc164zsXhxMKF1H9HEzdF63oXYmjCwlvTFMn0rml8747QXm2a5I5_1kP0dHP9eHU7nt1P764ms7HlTOKx4NRWimBpjaS6YrLWYGtdVcpQR7Gs5rSqNCNzpkTNlFUcbEWsqoWeW4YZPURnw72rGJ7XLvVl65PNbzCdC-tUYkU4Z1gp-Q8KShKuqc709A9dhnXs8iAl1iCE1MD5VpUbIVIKAlmdD8rmDlJ0dbmK-ZPjpsRQfjVa_m40czLwF9-4zVZbTh9mnHGK6SfehKNX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800277620</pqid></control><display><type>article</type><title>Aerosol data assimilation using data from Himawari‐8, a next‐generation geostationary meteorological satellite</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Yumimoto, K. ; Nagao, T.M. ; Kikuchi, M. ; Sekiyama, T.T ; Murakami, H. ; Tanaka, T.Y. ; Ogi, A. ; Irie, H. ; Khatri, P. ; Okumura, H. ; Arai, K. ; Morino, I. ; Uchino, O. ; Maki, T.</creator><creatorcontrib>Yumimoto, K. ; Nagao, T.M. ; Kikuchi, M. ; Sekiyama, T.T ; Murakami, H. ; Tanaka, T.Y. ; Ogi, A. ; Irie, H. ; Khatri, P. ; Okumura, H. ; Arai, K. ; Morino, I. ; Uchino, O. ; Maki, T.</creatorcontrib><description>Himawari‐8, a next‐generation geostationary meteorological satellite, was launched on 7 October 2014 and became operational on 7 July 2015. The advanced imager on board Himawari‐8 is equipped with 16 observational bands (including three visible and three near‐infrared bands) that enable retrieval of full‐disk aerosol optical properties at 10 min intervals from geostationary (GEO) orbit. Here we show the first application of aerosol optical properties (AOPs) derived from Himawari‐8 data to aerosol data assimilation. Validation of the assimilation experiment by comparison with independent observations demonstrated successful modeling of continental pollution that was not predicted by simulation without assimilation and reduced overestimates of dust front concentrations. These promising results suggest that AOPs derived from Himawari‐8/9 and other planned GEO satellites will considerably improve forecasts of air quality, inverse modeling of emissions, and aerosol reanalysis through assimilation techniques. Key Points Next‐generation geostationary meteorological satellite Himawari‐8 launched on 7 October 2014 Himawari‐8 provides full‐disk aerosol optical properties at 10 min intervals from geostationary orbit Promising results of aerosol assimilation experiment on Himawari‐8 retrievals</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2016GL069298</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>aerosol ; aerosol climate model ; Aerosol optical properties ; Aerosols ; Air ; Air pollution ; Air quality ; Assimilation ; Atmospheric particulates ; Computer simulation ; Data ; Data assimilation ; Data collection ; Data processing ; Dust ; Dust storms ; ensemble Kalman filter ; geostationary satellite ; I.R. radiation ; Intervals ; Mathematical models ; Meteorological satellites ; Modelling ; Near infrared radiation ; Onboard ; Optical properties ; Pollution ; Properties ; Remote sensing ; Retrieval ; Satellite imagery ; Satellites ; Simulation ; Spaceborne remote sensing</subject><ispartof>Geophysical research letters, 2016-06, Vol.43 (11), p.5886-5894</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5471-653cb8217ca739b47f90cf9bb8a3e317bd3bb942d486f48c850cb2c8f69dc4143</citedby><cites>FETCH-LOGICAL-c5471-653cb8217ca739b47f90cf9bb8a3e317bd3bb942d486f48c850cb2c8f69dc4143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016GL069298$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016GL069298$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,11495,27905,27906,45555,45556,46390,46449,46814,46873</link.rule.ids></links><search><creatorcontrib>Yumimoto, K.</creatorcontrib><creatorcontrib>Nagao, T.M.</creatorcontrib><creatorcontrib>Kikuchi, M.</creatorcontrib><creatorcontrib>Sekiyama, T.T</creatorcontrib><creatorcontrib>Murakami, H.</creatorcontrib><creatorcontrib>Tanaka, T.Y.</creatorcontrib><creatorcontrib>Ogi, A.</creatorcontrib><creatorcontrib>Irie, H.</creatorcontrib><creatorcontrib>Khatri, P.</creatorcontrib><creatorcontrib>Okumura, H.</creatorcontrib><creatorcontrib>Arai, K.</creatorcontrib><creatorcontrib>Morino, I.</creatorcontrib><creatorcontrib>Uchino, O.</creatorcontrib><creatorcontrib>Maki, T.</creatorcontrib><title>Aerosol data assimilation using data from Himawari‐8, a next‐generation geostationary meteorological satellite</title><title>Geophysical research letters</title><description>Himawari‐8, a next‐generation geostationary meteorological satellite, was launched on 7 October 2014 and became operational on 7 July 2015. The advanced imager on board Himawari‐8 is equipped with 16 observational bands (including three visible and three near‐infrared bands) that enable retrieval of full‐disk aerosol optical properties at 10 min intervals from geostationary (GEO) orbit. Here we show the first application of aerosol optical properties (AOPs) derived from Himawari‐8 data to aerosol data assimilation. Validation of the assimilation experiment by comparison with independent observations demonstrated successful modeling of continental pollution that was not predicted by simulation without assimilation and reduced overestimates of dust front concentrations. These promising results suggest that AOPs derived from Himawari‐8/9 and other planned GEO satellites will considerably improve forecasts of air quality, inverse modeling of emissions, and aerosol reanalysis through assimilation techniques. Key Points Next‐generation geostationary meteorological satellite Himawari‐8 launched on 7 October 2014 Himawari‐8 provides full‐disk aerosol optical properties at 10 min intervals from geostationary orbit Promising results of aerosol assimilation experiment on Himawari‐8 retrievals</description><subject>aerosol</subject><subject>aerosol climate model</subject><subject>Aerosol optical properties</subject><subject>Aerosols</subject><subject>Air</subject><subject>Air pollution</subject><subject>Air quality</subject><subject>Assimilation</subject><subject>Atmospheric particulates</subject><subject>Computer simulation</subject><subject>Data</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Data processing</subject><subject>Dust</subject><subject>Dust storms</subject><subject>ensemble Kalman filter</subject><subject>geostationary satellite</subject><subject>I.R. radiation</subject><subject>Intervals</subject><subject>Mathematical models</subject><subject>Meteorological satellites</subject><subject>Modelling</subject><subject>Near infrared radiation</subject><subject>Onboard</subject><subject>Optical properties</subject><subject>Pollution</subject><subject>Properties</subject><subject>Remote sensing</subject><subject>Retrieval</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Simulation</subject><subject>Spaceborne remote sensing</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0ctKAzEUBuAgCtbLzgcYcOPC6sk9WRbRKhQE0fWQSTMlZWZSkynanY_gM_okRseFuCiu8hO-hJz8CJ1guMAA5JIAFtMZCE202kEjrBkbKwC5i0YAOmcixT46SGkJABQoHqE4cTGk0BRz05vCpORb35jeh65YJ98thv06hra49a15MdF_vL2r88IUnXvtc164zsXhxMKF1H9HEzdF63oXYmjCwlvTFMn0rml8747QXm2a5I5_1kP0dHP9eHU7nt1P764ms7HlTOKx4NRWimBpjaS6YrLWYGtdVcpQR7Gs5rSqNCNzpkTNlFUcbEWsqoWeW4YZPURnw72rGJ7XLvVl65PNbzCdC-tUYkU4Z1gp-Q8KShKuqc709A9dhnXs8iAl1iCE1MD5VpUbIVIKAlmdD8rmDlJ0dbmK-ZPjpsRQfjVa_m40czLwF9-4zVZbTh9mnHGK6SfehKNX</recordid><startdate>20160616</startdate><enddate>20160616</enddate><creator>Yumimoto, K.</creator><creator>Nagao, T.M.</creator><creator>Kikuchi, M.</creator><creator>Sekiyama, T.T</creator><creator>Murakami, H.</creator><creator>Tanaka, T.Y.</creator><creator>Ogi, A.</creator><creator>Irie, H.</creator><creator>Khatri, P.</creator><creator>Okumura, H.</creator><creator>Arai, K.</creator><creator>Morino, I.</creator><creator>Uchino, O.</creator><creator>Maki, T.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7TV</scope><scope>C1K</scope></search><sort><creationdate>20160616</creationdate><title>Aerosol data assimilation using data from Himawari‐8, a next‐generation geostationary meteorological satellite</title><author>Yumimoto, K. ; Nagao, T.M. ; Kikuchi, M. ; Sekiyama, T.T ; Murakami, H. ; Tanaka, T.Y. ; Ogi, A. ; Irie, H. ; Khatri, P. ; Okumura, H. ; Arai, K. ; Morino, I. ; Uchino, O. ; Maki, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5471-653cb8217ca739b47f90cf9bb8a3e317bd3bb942d486f48c850cb2c8f69dc4143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>aerosol</topic><topic>aerosol climate model</topic><topic>Aerosol optical properties</topic><topic>Aerosols</topic><topic>Air</topic><topic>Air pollution</topic><topic>Air quality</topic><topic>Assimilation</topic><topic>Atmospheric particulates</topic><topic>Computer simulation</topic><topic>Data</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Data processing</topic><topic>Dust</topic><topic>Dust storms</topic><topic>ensemble Kalman filter</topic><topic>geostationary satellite</topic><topic>I.R. radiation</topic><topic>Intervals</topic><topic>Mathematical models</topic><topic>Meteorological satellites</topic><topic>Modelling</topic><topic>Near infrared radiation</topic><topic>Onboard</topic><topic>Optical properties</topic><topic>Pollution</topic><topic>Properties</topic><topic>Remote sensing</topic><topic>Retrieval</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Simulation</topic><topic>Spaceborne remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yumimoto, K.</creatorcontrib><creatorcontrib>Nagao, T.M.</creatorcontrib><creatorcontrib>Kikuchi, M.</creatorcontrib><creatorcontrib>Sekiyama, T.T</creatorcontrib><creatorcontrib>Murakami, H.</creatorcontrib><creatorcontrib>Tanaka, T.Y.</creatorcontrib><creatorcontrib>Ogi, A.</creatorcontrib><creatorcontrib>Irie, H.</creatorcontrib><creatorcontrib>Khatri, P.</creatorcontrib><creatorcontrib>Okumura, H.</creatorcontrib><creatorcontrib>Arai, K.</creatorcontrib><creatorcontrib>Morino, I.</creatorcontrib><creatorcontrib>Uchino, O.</creatorcontrib><creatorcontrib>Maki, T.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yumimoto, K.</au><au>Nagao, T.M.</au><au>Kikuchi, M.</au><au>Sekiyama, T.T</au><au>Murakami, H.</au><au>Tanaka, T.Y.</au><au>Ogi, A.</au><au>Irie, H.</au><au>Khatri, P.</au><au>Okumura, H.</au><au>Arai, K.</au><au>Morino, I.</au><au>Uchino, O.</au><au>Maki, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerosol data assimilation using data from Himawari‐8, a next‐generation geostationary meteorological satellite</atitle><jtitle>Geophysical research letters</jtitle><date>2016-06-16</date><risdate>2016</risdate><volume>43</volume><issue>11</issue><spage>5886</spage><epage>5894</epage><pages>5886-5894</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Himawari‐8, a next‐generation geostationary meteorological satellite, was launched on 7 October 2014 and became operational on 7 July 2015. The advanced imager on board Himawari‐8 is equipped with 16 observational bands (including three visible and three near‐infrared bands) that enable retrieval of full‐disk aerosol optical properties at 10 min intervals from geostationary (GEO) orbit. Here we show the first application of aerosol optical properties (AOPs) derived from Himawari‐8 data to aerosol data assimilation. Validation of the assimilation experiment by comparison with independent observations demonstrated successful modeling of continental pollution that was not predicted by simulation without assimilation and reduced overestimates of dust front concentrations. These promising results suggest that AOPs derived from Himawari‐8/9 and other planned GEO satellites will considerably improve forecasts of air quality, inverse modeling of emissions, and aerosol reanalysis through assimilation techniques. Key Points Next‐generation geostationary meteorological satellite Himawari‐8 launched on 7 October 2014 Himawari‐8 provides full‐disk aerosol optical properties at 10 min intervals from geostationary orbit Promising results of aerosol assimilation experiment on Himawari‐8 retrievals</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2016GL069298</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2016-06, Vol.43 (11), p.5886-5894
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1825541887
source Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library
subjects aerosol
aerosol climate model
Aerosol optical properties
Aerosols
Air
Air pollution
Air quality
Assimilation
Atmospheric particulates
Computer simulation
Data
Data assimilation
Data collection
Data processing
Dust
Dust storms
ensemble Kalman filter
geostationary satellite
I.R. radiation
Intervals
Mathematical models
Meteorological satellites
Modelling
Near infrared radiation
Onboard
Optical properties
Pollution
Properties
Remote sensing
Retrieval
Satellite imagery
Satellites
Simulation
Spaceborne remote sensing
title Aerosol data assimilation using data from Himawari‐8, a next‐generation geostationary meteorological satellite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerosol%20data%20assimilation%20using%20data%20from%20Himawari%E2%80%908,%20a%20next%E2%80%90generation%20geostationary%20meteorological%20satellite&rft.jtitle=Geophysical%20research%20letters&rft.au=Yumimoto,%20K.&rft.date=2016-06-16&rft.volume=43&rft.issue=11&rft.spage=5886&rft.epage=5894&rft.pages=5886-5894&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2016GL069298&rft_dat=%3Cproquest_cross%3E4103637791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1800277620&rft_id=info:pmid/&rfr_iscdi=true