Aerosol data assimilation using data from Himawari‐8, a next‐generation geostationary meteorological satellite
Himawari‐8, a next‐generation geostationary meteorological satellite, was launched on 7 October 2014 and became operational on 7 July 2015. The advanced imager on board Himawari‐8 is equipped with 16 observational bands (including three visible and three near‐infrared bands) that enable retrieval of...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2016-06, Vol.43 (11), p.5886-5894 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5894 |
---|---|
container_issue | 11 |
container_start_page | 5886 |
container_title | Geophysical research letters |
container_volume | 43 |
creator | Yumimoto, K. Nagao, T.M. Kikuchi, M. Sekiyama, T.T Murakami, H. Tanaka, T.Y. Ogi, A. Irie, H. Khatri, P. Okumura, H. Arai, K. Morino, I. Uchino, O. Maki, T. |
description | Himawari‐8, a next‐generation geostationary meteorological satellite, was launched on 7 October 2014 and became operational on 7 July 2015. The advanced imager on board Himawari‐8 is equipped with 16 observational bands (including three visible and three near‐infrared bands) that enable retrieval of full‐disk aerosol optical properties at 10 min intervals from geostationary (GEO) orbit. Here we show the first application of aerosol optical properties (AOPs) derived from Himawari‐8 data to aerosol data assimilation. Validation of the assimilation experiment by comparison with independent observations demonstrated successful modeling of continental pollution that was not predicted by simulation without assimilation and reduced overestimates of dust front concentrations. These promising results suggest that AOPs derived from Himawari‐8/9 and other planned GEO satellites will considerably improve forecasts of air quality, inverse modeling of emissions, and aerosol reanalysis through assimilation techniques.
Key Points
Next‐generation geostationary meteorological satellite Himawari‐8 launched on 7 October 2014
Himawari‐8 provides full‐disk aerosol optical properties at 10 min intervals from geostationary orbit
Promising results of aerosol assimilation experiment on Himawari‐8 retrievals |
doi_str_mv | 10.1002/2016GL069298 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825541887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4103637791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5471-653cb8217ca739b47f90cf9bb8a3e317bd3bb942d486f48c850cb2c8f69dc4143</originalsourceid><addsrcrecordid>eNqN0ctKAzEUBuAgCtbLzgcYcOPC6sk9WRbRKhQE0fWQSTMlZWZSkynanY_gM_okRseFuCiu8hO-hJz8CJ1guMAA5JIAFtMZCE202kEjrBkbKwC5i0YAOmcixT46SGkJABQoHqE4cTGk0BRz05vCpORb35jeh65YJ98thv06hra49a15MdF_vL2r88IUnXvtc164zsXhxMKF1H9HEzdF63oXYmjCwlvTFMn0rml8747QXm2a5I5_1kP0dHP9eHU7nt1P764ms7HlTOKx4NRWimBpjaS6YrLWYGtdVcpQR7Gs5rSqNCNzpkTNlFUcbEWsqoWeW4YZPURnw72rGJ7XLvVl65PNbzCdC-tUYkU4Z1gp-Q8KShKuqc709A9dhnXs8iAl1iCE1MD5VpUbIVIKAlmdD8rmDlJ0dbmK-ZPjpsRQfjVa_m40czLwF9-4zVZbTh9mnHGK6SfehKNX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800277620</pqid></control><display><type>article</type><title>Aerosol data assimilation using data from Himawari‐8, a next‐generation geostationary meteorological satellite</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Yumimoto, K. ; Nagao, T.M. ; Kikuchi, M. ; Sekiyama, T.T ; Murakami, H. ; Tanaka, T.Y. ; Ogi, A. ; Irie, H. ; Khatri, P. ; Okumura, H. ; Arai, K. ; Morino, I. ; Uchino, O. ; Maki, T.</creator><creatorcontrib>Yumimoto, K. ; Nagao, T.M. ; Kikuchi, M. ; Sekiyama, T.T ; Murakami, H. ; Tanaka, T.Y. ; Ogi, A. ; Irie, H. ; Khatri, P. ; Okumura, H. ; Arai, K. ; Morino, I. ; Uchino, O. ; Maki, T.</creatorcontrib><description>Himawari‐8, a next‐generation geostationary meteorological satellite, was launched on 7 October 2014 and became operational on 7 July 2015. The advanced imager on board Himawari‐8 is equipped with 16 observational bands (including three visible and three near‐infrared bands) that enable retrieval of full‐disk aerosol optical properties at 10 min intervals from geostationary (GEO) orbit. Here we show the first application of aerosol optical properties (AOPs) derived from Himawari‐8 data to aerosol data assimilation. Validation of the assimilation experiment by comparison with independent observations demonstrated successful modeling of continental pollution that was not predicted by simulation without assimilation and reduced overestimates of dust front concentrations. These promising results suggest that AOPs derived from Himawari‐8/9 and other planned GEO satellites will considerably improve forecasts of air quality, inverse modeling of emissions, and aerosol reanalysis through assimilation techniques.
Key Points
Next‐generation geostationary meteorological satellite Himawari‐8 launched on 7 October 2014
Himawari‐8 provides full‐disk aerosol optical properties at 10 min intervals from geostationary orbit
Promising results of aerosol assimilation experiment on Himawari‐8 retrievals</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2016GL069298</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>aerosol ; aerosol climate model ; Aerosol optical properties ; Aerosols ; Air ; Air pollution ; Air quality ; Assimilation ; Atmospheric particulates ; Computer simulation ; Data ; Data assimilation ; Data collection ; Data processing ; Dust ; Dust storms ; ensemble Kalman filter ; geostationary satellite ; I.R. radiation ; Intervals ; Mathematical models ; Meteorological satellites ; Modelling ; Near infrared radiation ; Onboard ; Optical properties ; Pollution ; Properties ; Remote sensing ; Retrieval ; Satellite imagery ; Satellites ; Simulation ; Spaceborne remote sensing</subject><ispartof>Geophysical research letters, 2016-06, Vol.43 (11), p.5886-5894</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5471-653cb8217ca739b47f90cf9bb8a3e317bd3bb942d486f48c850cb2c8f69dc4143</citedby><cites>FETCH-LOGICAL-c5471-653cb8217ca739b47f90cf9bb8a3e317bd3bb942d486f48c850cb2c8f69dc4143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016GL069298$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016GL069298$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,11495,27905,27906,45555,45556,46390,46449,46814,46873</link.rule.ids></links><search><creatorcontrib>Yumimoto, K.</creatorcontrib><creatorcontrib>Nagao, T.M.</creatorcontrib><creatorcontrib>Kikuchi, M.</creatorcontrib><creatorcontrib>Sekiyama, T.T</creatorcontrib><creatorcontrib>Murakami, H.</creatorcontrib><creatorcontrib>Tanaka, T.Y.</creatorcontrib><creatorcontrib>Ogi, A.</creatorcontrib><creatorcontrib>Irie, H.</creatorcontrib><creatorcontrib>Khatri, P.</creatorcontrib><creatorcontrib>Okumura, H.</creatorcontrib><creatorcontrib>Arai, K.</creatorcontrib><creatorcontrib>Morino, I.</creatorcontrib><creatorcontrib>Uchino, O.</creatorcontrib><creatorcontrib>Maki, T.</creatorcontrib><title>Aerosol data assimilation using data from Himawari‐8, a next‐generation geostationary meteorological satellite</title><title>Geophysical research letters</title><description>Himawari‐8, a next‐generation geostationary meteorological satellite, was launched on 7 October 2014 and became operational on 7 July 2015. The advanced imager on board Himawari‐8 is equipped with 16 observational bands (including three visible and three near‐infrared bands) that enable retrieval of full‐disk aerosol optical properties at 10 min intervals from geostationary (GEO) orbit. Here we show the first application of aerosol optical properties (AOPs) derived from Himawari‐8 data to aerosol data assimilation. Validation of the assimilation experiment by comparison with independent observations demonstrated successful modeling of continental pollution that was not predicted by simulation without assimilation and reduced overestimates of dust front concentrations. These promising results suggest that AOPs derived from Himawari‐8/9 and other planned GEO satellites will considerably improve forecasts of air quality, inverse modeling of emissions, and aerosol reanalysis through assimilation techniques.
Key Points
Next‐generation geostationary meteorological satellite Himawari‐8 launched on 7 October 2014
Himawari‐8 provides full‐disk aerosol optical properties at 10 min intervals from geostationary orbit
Promising results of aerosol assimilation experiment on Himawari‐8 retrievals</description><subject>aerosol</subject><subject>aerosol climate model</subject><subject>Aerosol optical properties</subject><subject>Aerosols</subject><subject>Air</subject><subject>Air pollution</subject><subject>Air quality</subject><subject>Assimilation</subject><subject>Atmospheric particulates</subject><subject>Computer simulation</subject><subject>Data</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Data processing</subject><subject>Dust</subject><subject>Dust storms</subject><subject>ensemble Kalman filter</subject><subject>geostationary satellite</subject><subject>I.R. radiation</subject><subject>Intervals</subject><subject>Mathematical models</subject><subject>Meteorological satellites</subject><subject>Modelling</subject><subject>Near infrared radiation</subject><subject>Onboard</subject><subject>Optical properties</subject><subject>Pollution</subject><subject>Properties</subject><subject>Remote sensing</subject><subject>Retrieval</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Simulation</subject><subject>Spaceborne remote sensing</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0ctKAzEUBuAgCtbLzgcYcOPC6sk9WRbRKhQE0fWQSTMlZWZSkynanY_gM_okRseFuCiu8hO-hJz8CJ1guMAA5JIAFtMZCE202kEjrBkbKwC5i0YAOmcixT46SGkJABQoHqE4cTGk0BRz05vCpORb35jeh65YJ98thv06hra49a15MdF_vL2r88IUnXvtc164zsXhxMKF1H9HEzdF63oXYmjCwlvTFMn0rml8747QXm2a5I5_1kP0dHP9eHU7nt1P764ms7HlTOKx4NRWimBpjaS6YrLWYGtdVcpQR7Gs5rSqNCNzpkTNlFUcbEWsqoWeW4YZPURnw72rGJ7XLvVl65PNbzCdC-tUYkU4Z1gp-Q8KShKuqc709A9dhnXs8iAl1iCE1MD5VpUbIVIKAlmdD8rmDlJ0dbmK-ZPjpsRQfjVa_m40czLwF9-4zVZbTh9mnHGK6SfehKNX</recordid><startdate>20160616</startdate><enddate>20160616</enddate><creator>Yumimoto, K.</creator><creator>Nagao, T.M.</creator><creator>Kikuchi, M.</creator><creator>Sekiyama, T.T</creator><creator>Murakami, H.</creator><creator>Tanaka, T.Y.</creator><creator>Ogi, A.</creator><creator>Irie, H.</creator><creator>Khatri, P.</creator><creator>Okumura, H.</creator><creator>Arai, K.</creator><creator>Morino, I.</creator><creator>Uchino, O.</creator><creator>Maki, T.</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7TV</scope><scope>C1K</scope></search><sort><creationdate>20160616</creationdate><title>Aerosol data assimilation using data from Himawari‐8, a next‐generation geostationary meteorological satellite</title><author>Yumimoto, K. ; Nagao, T.M. ; Kikuchi, M. ; Sekiyama, T.T ; Murakami, H. ; Tanaka, T.Y. ; Ogi, A. ; Irie, H. ; Khatri, P. ; Okumura, H. ; Arai, K. ; Morino, I. ; Uchino, O. ; Maki, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5471-653cb8217ca739b47f90cf9bb8a3e317bd3bb942d486f48c850cb2c8f69dc4143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>aerosol</topic><topic>aerosol climate model</topic><topic>Aerosol optical properties</topic><topic>Aerosols</topic><topic>Air</topic><topic>Air pollution</topic><topic>Air quality</topic><topic>Assimilation</topic><topic>Atmospheric particulates</topic><topic>Computer simulation</topic><topic>Data</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Data processing</topic><topic>Dust</topic><topic>Dust storms</topic><topic>ensemble Kalman filter</topic><topic>geostationary satellite</topic><topic>I.R. radiation</topic><topic>Intervals</topic><topic>Mathematical models</topic><topic>Meteorological satellites</topic><topic>Modelling</topic><topic>Near infrared radiation</topic><topic>Onboard</topic><topic>Optical properties</topic><topic>Pollution</topic><topic>Properties</topic><topic>Remote sensing</topic><topic>Retrieval</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Simulation</topic><topic>Spaceborne remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yumimoto, K.</creatorcontrib><creatorcontrib>Nagao, T.M.</creatorcontrib><creatorcontrib>Kikuchi, M.</creatorcontrib><creatorcontrib>Sekiyama, T.T</creatorcontrib><creatorcontrib>Murakami, H.</creatorcontrib><creatorcontrib>Tanaka, T.Y.</creatorcontrib><creatorcontrib>Ogi, A.</creatorcontrib><creatorcontrib>Irie, H.</creatorcontrib><creatorcontrib>Khatri, P.</creatorcontrib><creatorcontrib>Okumura, H.</creatorcontrib><creatorcontrib>Arai, K.</creatorcontrib><creatorcontrib>Morino, I.</creatorcontrib><creatorcontrib>Uchino, O.</creatorcontrib><creatorcontrib>Maki, T.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yumimoto, K.</au><au>Nagao, T.M.</au><au>Kikuchi, M.</au><au>Sekiyama, T.T</au><au>Murakami, H.</au><au>Tanaka, T.Y.</au><au>Ogi, A.</au><au>Irie, H.</au><au>Khatri, P.</au><au>Okumura, H.</au><au>Arai, K.</au><au>Morino, I.</au><au>Uchino, O.</au><au>Maki, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerosol data assimilation using data from Himawari‐8, a next‐generation geostationary meteorological satellite</atitle><jtitle>Geophysical research letters</jtitle><date>2016-06-16</date><risdate>2016</risdate><volume>43</volume><issue>11</issue><spage>5886</spage><epage>5894</epage><pages>5886-5894</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Himawari‐8, a next‐generation geostationary meteorological satellite, was launched on 7 October 2014 and became operational on 7 July 2015. The advanced imager on board Himawari‐8 is equipped with 16 observational bands (including three visible and three near‐infrared bands) that enable retrieval of full‐disk aerosol optical properties at 10 min intervals from geostationary (GEO) orbit. Here we show the first application of aerosol optical properties (AOPs) derived from Himawari‐8 data to aerosol data assimilation. Validation of the assimilation experiment by comparison with independent observations demonstrated successful modeling of continental pollution that was not predicted by simulation without assimilation and reduced overestimates of dust front concentrations. These promising results suggest that AOPs derived from Himawari‐8/9 and other planned GEO satellites will considerably improve forecasts of air quality, inverse modeling of emissions, and aerosol reanalysis through assimilation techniques.
Key Points
Next‐generation geostationary meteorological satellite Himawari‐8 launched on 7 October 2014
Himawari‐8 provides full‐disk aerosol optical properties at 10 min intervals from geostationary orbit
Promising results of aerosol assimilation experiment on Himawari‐8 retrievals</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2016GL069298</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2016-06, Vol.43 (11), p.5886-5894 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825541887 |
source | Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library |
subjects | aerosol aerosol climate model Aerosol optical properties Aerosols Air Air pollution Air quality Assimilation Atmospheric particulates Computer simulation Data Data assimilation Data collection Data processing Dust Dust storms ensemble Kalman filter geostationary satellite I.R. radiation Intervals Mathematical models Meteorological satellites Modelling Near infrared radiation Onboard Optical properties Pollution Properties Remote sensing Retrieval Satellite imagery Satellites Simulation Spaceborne remote sensing |
title | Aerosol data assimilation using data from Himawari‐8, a next‐generation geostationary meteorological satellite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerosol%20data%20assimilation%20using%20data%20from%20Himawari%E2%80%908,%20a%20next%E2%80%90generation%20geostationary%20meteorological%20satellite&rft.jtitle=Geophysical%20research%20letters&rft.au=Yumimoto,%20K.&rft.date=2016-06-16&rft.volume=43&rft.issue=11&rft.spage=5886&rft.epage=5894&rft.pages=5886-5894&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2016GL069298&rft_dat=%3Cproquest_cross%3E4103637791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1800277620&rft_id=info:pmid/&rfr_iscdi=true |