A new method for optimizing operation of large neighborhoods of buildings using thermal simulation
•Thermal building simulation for neighbourhoods is feasible if the modeling process is automated.•Automated building models are equipped with controllers on zone level.•CO2 emissions can be reduced by merely optimizing the neighborhood energy management. Energy consumption in buildings is a key fact...
Gespeichert in:
Veröffentlicht in: | Energy and buildings 2016-08, Vol.125, p.153-160 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 160 |
---|---|
container_issue | |
container_start_page | 153 |
container_title | Energy and buildings |
container_volume | 125 |
creator | Zucker, Gerhard Judex, Florian Blöchle, Max Köstl, Mario Widl, Edmund Hauer, Stefan Bres, Aurelien Zeilinger, Jyoti |
description | •Thermal building simulation for neighbourhoods is feasible if the modeling process is automated.•Automated building models are equipped with controllers on zone level.•CO2 emissions can be reduced by merely optimizing the neighborhood energy management.
Energy consumption in buildings is a key factor when accomplishing national and global CO2 emission goals. The economic savings per building are limited and are difficult to argue. However, the efforts can be aggregated on district or city level: the approach described in this paper is a large scale co-simulation environment that helps to leverage efficiency by providing quantitative information about the efficiency impact on large scale, while minimizing the efforts in modeling single buildings. It addresses the challenge of modeling thermal behavior of a large neighborhood of buildings in order to calculate energy demands, regarding weather conditions, shading and room temperature settings with a time resolution below one hour. A proof of concept applies the method to a demonstration site of residential buildings and shows the heating demand and CO2 footprint of the neighborhood. |
doi_str_mv | 10.1016/j.enbuild.2016.04.081 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825541445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378778816303589</els_id><sourcerecordid>1808724389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-bfd2263f791c918da1d8265740d48d0378f27f9c8f35545bf0d852f41b35e2c63</originalsourceid><addsrcrecordid>eNqNkE1PxCAQhjlo4rr6E0x69NIKFFp6MpuNX8kmXvRMWhi2bNqyQqvRXy_d3bueGMjzDDMvQjcEZwST4m6XwdBMttMZjdcMswwLcoYWOC9FWpZCXKDLEHYY44KXZIGaVTLAV9LD2DqdGOcTtx9tb3_ssI0l-Hq0bkicSbrabyHCdts2zrfO6TA_Hz6LcEimMDtjC76vuyTYfuoO8hU6N3UX4Pp0LtH748Pb-jndvD69rFebVDGBx7QxmtIiN2VFVEWErokWNA7JsGZCz_MbWppKCZNzznhjsBacGkaanANVRb5Et8e-e-8-Jgij7G1Q0HX1AG4KkggaRcIY_weKRUlZLqqI8iOqvAvBg5F7b_vaf0uC5Ry53MlT5HKOXGImY-TRuz96EFf-tOBlUBYGBdp6UKPUzv7R4RcD34_C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808724389</pqid></control><display><type>article</type><title>A new method for optimizing operation of large neighborhoods of buildings using thermal simulation</title><source>Elsevier ScienceDirect Journals</source><creator>Zucker, Gerhard ; Judex, Florian ; Blöchle, Max ; Köstl, Mario ; Widl, Edmund ; Hauer, Stefan ; Bres, Aurelien ; Zeilinger, Jyoti</creator><creatorcontrib>Zucker, Gerhard ; Judex, Florian ; Blöchle, Max ; Köstl, Mario ; Widl, Edmund ; Hauer, Stefan ; Bres, Aurelien ; Zeilinger, Jyoti</creatorcontrib><description>•Thermal building simulation for neighbourhoods is feasible if the modeling process is automated.•Automated building models are equipped with controllers on zone level.•CO2 emissions can be reduced by merely optimizing the neighborhood energy management.
Energy consumption in buildings is a key factor when accomplishing national and global CO2 emission goals. The economic savings per building are limited and are difficult to argue. However, the efforts can be aggregated on district or city level: the approach described in this paper is a large scale co-simulation environment that helps to leverage efficiency by providing quantitative information about the efficiency impact on large scale, while minimizing the efforts in modeling single buildings. It addresses the challenge of modeling thermal behavior of a large neighborhood of buildings in order to calculate energy demands, regarding weather conditions, shading and room temperature settings with a time resolution below one hour. A proof of concept applies the method to a demonstration site of residential buildings and shows the heating demand and CO2 footprint of the neighborhood.</description><identifier>ISSN: 0378-7788</identifier><identifier>DOI: 10.1016/j.enbuild.2016.04.081</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Building optimization ; Carbon dioxide ; Co-simulation ; Computational efficiency ; Computing time ; Demand ; Economics ; Energy efficiency ; EnergyPlus ; Mathematical models ; Ptolemy ; Thermal properties ; Thermal simulation</subject><ispartof>Energy and buildings, 2016-08, Vol.125, p.153-160</ispartof><rights>2016 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-bfd2263f791c918da1d8265740d48d0378f27f9c8f35545bf0d852f41b35e2c63</citedby><cites>FETCH-LOGICAL-c480t-bfd2263f791c918da1d8265740d48d0378f27f9c8f35545bf0d852f41b35e2c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378778816303589$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zucker, Gerhard</creatorcontrib><creatorcontrib>Judex, Florian</creatorcontrib><creatorcontrib>Blöchle, Max</creatorcontrib><creatorcontrib>Köstl, Mario</creatorcontrib><creatorcontrib>Widl, Edmund</creatorcontrib><creatorcontrib>Hauer, Stefan</creatorcontrib><creatorcontrib>Bres, Aurelien</creatorcontrib><creatorcontrib>Zeilinger, Jyoti</creatorcontrib><title>A new method for optimizing operation of large neighborhoods of buildings using thermal simulation</title><title>Energy and buildings</title><description>•Thermal building simulation for neighbourhoods is feasible if the modeling process is automated.•Automated building models are equipped with controllers on zone level.•CO2 emissions can be reduced by merely optimizing the neighborhood energy management.
Energy consumption in buildings is a key factor when accomplishing national and global CO2 emission goals. The economic savings per building are limited and are difficult to argue. However, the efforts can be aggregated on district or city level: the approach described in this paper is a large scale co-simulation environment that helps to leverage efficiency by providing quantitative information about the efficiency impact on large scale, while minimizing the efforts in modeling single buildings. It addresses the challenge of modeling thermal behavior of a large neighborhood of buildings in order to calculate energy demands, regarding weather conditions, shading and room temperature settings with a time resolution below one hour. A proof of concept applies the method to a demonstration site of residential buildings and shows the heating demand and CO2 footprint of the neighborhood.</description><subject>Building optimization</subject><subject>Carbon dioxide</subject><subject>Co-simulation</subject><subject>Computational efficiency</subject><subject>Computing time</subject><subject>Demand</subject><subject>Economics</subject><subject>Energy efficiency</subject><subject>EnergyPlus</subject><subject>Mathematical models</subject><subject>Ptolemy</subject><subject>Thermal properties</subject><subject>Thermal simulation</subject><issn>0378-7788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PxCAQhjlo4rr6E0x69NIKFFp6MpuNX8kmXvRMWhi2bNqyQqvRXy_d3bueGMjzDDMvQjcEZwST4m6XwdBMttMZjdcMswwLcoYWOC9FWpZCXKDLEHYY44KXZIGaVTLAV9LD2DqdGOcTtx9tb3_ssI0l-Hq0bkicSbrabyHCdts2zrfO6TA_Hz6LcEimMDtjC76vuyTYfuoO8hU6N3UX4Pp0LtH748Pb-jndvD69rFebVDGBx7QxmtIiN2VFVEWErokWNA7JsGZCz_MbWppKCZNzznhjsBacGkaanANVRb5Et8e-e-8-Jgij7G1Q0HX1AG4KkggaRcIY_weKRUlZLqqI8iOqvAvBg5F7b_vaf0uC5Ry53MlT5HKOXGImY-TRuz96EFf-tOBlUBYGBdp6UKPUzv7R4RcD34_C</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Zucker, Gerhard</creator><creator>Judex, Florian</creator><creator>Blöchle, Max</creator><creator>Köstl, Mario</creator><creator>Widl, Edmund</creator><creator>Hauer, Stefan</creator><creator>Bres, Aurelien</creator><creator>Zeilinger, Jyoti</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20160801</creationdate><title>A new method for optimizing operation of large neighborhoods of buildings using thermal simulation</title><author>Zucker, Gerhard ; Judex, Florian ; Blöchle, Max ; Köstl, Mario ; Widl, Edmund ; Hauer, Stefan ; Bres, Aurelien ; Zeilinger, Jyoti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-bfd2263f791c918da1d8265740d48d0378f27f9c8f35545bf0d852f41b35e2c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Building optimization</topic><topic>Carbon dioxide</topic><topic>Co-simulation</topic><topic>Computational efficiency</topic><topic>Computing time</topic><topic>Demand</topic><topic>Economics</topic><topic>Energy efficiency</topic><topic>EnergyPlus</topic><topic>Mathematical models</topic><topic>Ptolemy</topic><topic>Thermal properties</topic><topic>Thermal simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zucker, Gerhard</creatorcontrib><creatorcontrib>Judex, Florian</creatorcontrib><creatorcontrib>Blöchle, Max</creatorcontrib><creatorcontrib>Köstl, Mario</creatorcontrib><creatorcontrib>Widl, Edmund</creatorcontrib><creatorcontrib>Hauer, Stefan</creatorcontrib><creatorcontrib>Bres, Aurelien</creatorcontrib><creatorcontrib>Zeilinger, Jyoti</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zucker, Gerhard</au><au>Judex, Florian</au><au>Blöchle, Max</au><au>Köstl, Mario</au><au>Widl, Edmund</au><au>Hauer, Stefan</au><au>Bres, Aurelien</au><au>Zeilinger, Jyoti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new method for optimizing operation of large neighborhoods of buildings using thermal simulation</atitle><jtitle>Energy and buildings</jtitle><date>2016-08-01</date><risdate>2016</risdate><volume>125</volume><spage>153</spage><epage>160</epage><pages>153-160</pages><issn>0378-7788</issn><abstract>•Thermal building simulation for neighbourhoods is feasible if the modeling process is automated.•Automated building models are equipped with controllers on zone level.•CO2 emissions can be reduced by merely optimizing the neighborhood energy management.
Energy consumption in buildings is a key factor when accomplishing national and global CO2 emission goals. The economic savings per building are limited and are difficult to argue. However, the efforts can be aggregated on district or city level: the approach described in this paper is a large scale co-simulation environment that helps to leverage efficiency by providing quantitative information about the efficiency impact on large scale, while minimizing the efforts in modeling single buildings. It addresses the challenge of modeling thermal behavior of a large neighborhood of buildings in order to calculate energy demands, regarding weather conditions, shading and room temperature settings with a time resolution below one hour. A proof of concept applies the method to a demonstration site of residential buildings and shows the heating demand and CO2 footprint of the neighborhood.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2016.04.081</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7788 |
ispartof | Energy and buildings, 2016-08, Vol.125, p.153-160 |
issn | 0378-7788 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825541445 |
source | Elsevier ScienceDirect Journals |
subjects | Building optimization Carbon dioxide Co-simulation Computational efficiency Computing time Demand Economics Energy efficiency EnergyPlus Mathematical models Ptolemy Thermal properties Thermal simulation |
title | A new method for optimizing operation of large neighborhoods of buildings using thermal simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20method%20for%20optimizing%20operation%20of%20large%20neighborhoods%20of%20buildings%20using%20thermal%20simulation&rft.jtitle=Energy%20and%20buildings&rft.au=Zucker,%20Gerhard&rft.date=2016-08-01&rft.volume=125&rft.spage=153&rft.epage=160&rft.pages=153-160&rft.issn=0378-7788&rft_id=info:doi/10.1016/j.enbuild.2016.04.081&rft_dat=%3Cproquest_cross%3E1808724389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808724389&rft_id=info:pmid/&rft_els_id=S0378778816303589&rfr_iscdi=true |