A new method for optimizing operation of large neighborhoods of buildings using thermal simulation

•Thermal building simulation for neighbourhoods is feasible if the modeling process is automated.•Automated building models are equipped with controllers on zone level.•CO2 emissions can be reduced by merely optimizing the neighborhood energy management. Energy consumption in buildings is a key fact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy and buildings 2016-08, Vol.125, p.153-160
Hauptverfasser: Zucker, Gerhard, Judex, Florian, Blöchle, Max, Köstl, Mario, Widl, Edmund, Hauer, Stefan, Bres, Aurelien, Zeilinger, Jyoti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160
container_issue
container_start_page 153
container_title Energy and buildings
container_volume 125
creator Zucker, Gerhard
Judex, Florian
Blöchle, Max
Köstl, Mario
Widl, Edmund
Hauer, Stefan
Bres, Aurelien
Zeilinger, Jyoti
description •Thermal building simulation for neighbourhoods is feasible if the modeling process is automated.•Automated building models are equipped with controllers on zone level.•CO2 emissions can be reduced by merely optimizing the neighborhood energy management. Energy consumption in buildings is a key factor when accomplishing national and global CO2 emission goals. The economic savings per building are limited and are difficult to argue. However, the efforts can be aggregated on district or city level: the approach described in this paper is a large scale co-simulation environment that helps to leverage efficiency by providing quantitative information about the efficiency impact on large scale, while minimizing the efforts in modeling single buildings. It addresses the challenge of modeling thermal behavior of a large neighborhood of buildings in order to calculate energy demands, regarding weather conditions, shading and room temperature settings with a time resolution below one hour. A proof of concept applies the method to a demonstration site of residential buildings and shows the heating demand and CO2 footprint of the neighborhood.
doi_str_mv 10.1016/j.enbuild.2016.04.081
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825541445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378778816303589</els_id><sourcerecordid>1808724389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-bfd2263f791c918da1d8265740d48d0378f27f9c8f35545bf0d852f41b35e2c63</originalsourceid><addsrcrecordid>eNqNkE1PxCAQhjlo4rr6E0x69NIKFFp6MpuNX8kmXvRMWhi2bNqyQqvRXy_d3bueGMjzDDMvQjcEZwST4m6XwdBMttMZjdcMswwLcoYWOC9FWpZCXKDLEHYY44KXZIGaVTLAV9LD2DqdGOcTtx9tb3_ssI0l-Hq0bkicSbrabyHCdts2zrfO6TA_Hz6LcEimMDtjC76vuyTYfuoO8hU6N3UX4Pp0LtH748Pb-jndvD69rFebVDGBx7QxmtIiN2VFVEWErokWNA7JsGZCz_MbWppKCZNzznhjsBacGkaanANVRb5Et8e-e-8-Jgij7G1Q0HX1AG4KkggaRcIY_weKRUlZLqqI8iOqvAvBg5F7b_vaf0uC5Ry53MlT5HKOXGImY-TRuz96EFf-tOBlUBYGBdp6UKPUzv7R4RcD34_C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808724389</pqid></control><display><type>article</type><title>A new method for optimizing operation of large neighborhoods of buildings using thermal simulation</title><source>Elsevier ScienceDirect Journals</source><creator>Zucker, Gerhard ; Judex, Florian ; Blöchle, Max ; Köstl, Mario ; Widl, Edmund ; Hauer, Stefan ; Bres, Aurelien ; Zeilinger, Jyoti</creator><creatorcontrib>Zucker, Gerhard ; Judex, Florian ; Blöchle, Max ; Köstl, Mario ; Widl, Edmund ; Hauer, Stefan ; Bres, Aurelien ; Zeilinger, Jyoti</creatorcontrib><description>•Thermal building simulation for neighbourhoods is feasible if the modeling process is automated.•Automated building models are equipped with controllers on zone level.•CO2 emissions can be reduced by merely optimizing the neighborhood energy management. Energy consumption in buildings is a key factor when accomplishing national and global CO2 emission goals. The economic savings per building are limited and are difficult to argue. However, the efforts can be aggregated on district or city level: the approach described in this paper is a large scale co-simulation environment that helps to leverage efficiency by providing quantitative information about the efficiency impact on large scale, while minimizing the efforts in modeling single buildings. It addresses the challenge of modeling thermal behavior of a large neighborhood of buildings in order to calculate energy demands, regarding weather conditions, shading and room temperature settings with a time resolution below one hour. A proof of concept applies the method to a demonstration site of residential buildings and shows the heating demand and CO2 footprint of the neighborhood.</description><identifier>ISSN: 0378-7788</identifier><identifier>DOI: 10.1016/j.enbuild.2016.04.081</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Building optimization ; Carbon dioxide ; Co-simulation ; Computational efficiency ; Computing time ; Demand ; Economics ; Energy efficiency ; EnergyPlus ; Mathematical models ; Ptolemy ; Thermal properties ; Thermal simulation</subject><ispartof>Energy and buildings, 2016-08, Vol.125, p.153-160</ispartof><rights>2016 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-bfd2263f791c918da1d8265740d48d0378f27f9c8f35545bf0d852f41b35e2c63</citedby><cites>FETCH-LOGICAL-c480t-bfd2263f791c918da1d8265740d48d0378f27f9c8f35545bf0d852f41b35e2c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378778816303589$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zucker, Gerhard</creatorcontrib><creatorcontrib>Judex, Florian</creatorcontrib><creatorcontrib>Blöchle, Max</creatorcontrib><creatorcontrib>Köstl, Mario</creatorcontrib><creatorcontrib>Widl, Edmund</creatorcontrib><creatorcontrib>Hauer, Stefan</creatorcontrib><creatorcontrib>Bres, Aurelien</creatorcontrib><creatorcontrib>Zeilinger, Jyoti</creatorcontrib><title>A new method for optimizing operation of large neighborhoods of buildings using thermal simulation</title><title>Energy and buildings</title><description>•Thermal building simulation for neighbourhoods is feasible if the modeling process is automated.•Automated building models are equipped with controllers on zone level.•CO2 emissions can be reduced by merely optimizing the neighborhood energy management. Energy consumption in buildings is a key factor when accomplishing national and global CO2 emission goals. The economic savings per building are limited and are difficult to argue. However, the efforts can be aggregated on district or city level: the approach described in this paper is a large scale co-simulation environment that helps to leverage efficiency by providing quantitative information about the efficiency impact on large scale, while minimizing the efforts in modeling single buildings. It addresses the challenge of modeling thermal behavior of a large neighborhood of buildings in order to calculate energy demands, regarding weather conditions, shading and room temperature settings with a time resolution below one hour. A proof of concept applies the method to a demonstration site of residential buildings and shows the heating demand and CO2 footprint of the neighborhood.</description><subject>Building optimization</subject><subject>Carbon dioxide</subject><subject>Co-simulation</subject><subject>Computational efficiency</subject><subject>Computing time</subject><subject>Demand</subject><subject>Economics</subject><subject>Energy efficiency</subject><subject>EnergyPlus</subject><subject>Mathematical models</subject><subject>Ptolemy</subject><subject>Thermal properties</subject><subject>Thermal simulation</subject><issn>0378-7788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PxCAQhjlo4rr6E0x69NIKFFp6MpuNX8kmXvRMWhi2bNqyQqvRXy_d3bueGMjzDDMvQjcEZwST4m6XwdBMttMZjdcMswwLcoYWOC9FWpZCXKDLEHYY44KXZIGaVTLAV9LD2DqdGOcTtx9tb3_ssI0l-Hq0bkicSbrabyHCdts2zrfO6TA_Hz6LcEimMDtjC76vuyTYfuoO8hU6N3UX4Pp0LtH748Pb-jndvD69rFebVDGBx7QxmtIiN2VFVEWErokWNA7JsGZCz_MbWppKCZNzznhjsBacGkaanANVRb5Et8e-e-8-Jgij7G1Q0HX1AG4KkggaRcIY_weKRUlZLqqI8iOqvAvBg5F7b_vaf0uC5Ry53MlT5HKOXGImY-TRuz96EFf-tOBlUBYGBdp6UKPUzv7R4RcD34_C</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Zucker, Gerhard</creator><creator>Judex, Florian</creator><creator>Blöchle, Max</creator><creator>Köstl, Mario</creator><creator>Widl, Edmund</creator><creator>Hauer, Stefan</creator><creator>Bres, Aurelien</creator><creator>Zeilinger, Jyoti</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20160801</creationdate><title>A new method for optimizing operation of large neighborhoods of buildings using thermal simulation</title><author>Zucker, Gerhard ; Judex, Florian ; Blöchle, Max ; Köstl, Mario ; Widl, Edmund ; Hauer, Stefan ; Bres, Aurelien ; Zeilinger, Jyoti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-bfd2263f791c918da1d8265740d48d0378f27f9c8f35545bf0d852f41b35e2c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Building optimization</topic><topic>Carbon dioxide</topic><topic>Co-simulation</topic><topic>Computational efficiency</topic><topic>Computing time</topic><topic>Demand</topic><topic>Economics</topic><topic>Energy efficiency</topic><topic>EnergyPlus</topic><topic>Mathematical models</topic><topic>Ptolemy</topic><topic>Thermal properties</topic><topic>Thermal simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zucker, Gerhard</creatorcontrib><creatorcontrib>Judex, Florian</creatorcontrib><creatorcontrib>Blöchle, Max</creatorcontrib><creatorcontrib>Köstl, Mario</creatorcontrib><creatorcontrib>Widl, Edmund</creatorcontrib><creatorcontrib>Hauer, Stefan</creatorcontrib><creatorcontrib>Bres, Aurelien</creatorcontrib><creatorcontrib>Zeilinger, Jyoti</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zucker, Gerhard</au><au>Judex, Florian</au><au>Blöchle, Max</au><au>Köstl, Mario</au><au>Widl, Edmund</au><au>Hauer, Stefan</au><au>Bres, Aurelien</au><au>Zeilinger, Jyoti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new method for optimizing operation of large neighborhoods of buildings using thermal simulation</atitle><jtitle>Energy and buildings</jtitle><date>2016-08-01</date><risdate>2016</risdate><volume>125</volume><spage>153</spage><epage>160</epage><pages>153-160</pages><issn>0378-7788</issn><abstract>•Thermal building simulation for neighbourhoods is feasible if the modeling process is automated.•Automated building models are equipped with controllers on zone level.•CO2 emissions can be reduced by merely optimizing the neighborhood energy management. Energy consumption in buildings is a key factor when accomplishing national and global CO2 emission goals. The economic savings per building are limited and are difficult to argue. However, the efforts can be aggregated on district or city level: the approach described in this paper is a large scale co-simulation environment that helps to leverage efficiency by providing quantitative information about the efficiency impact on large scale, while minimizing the efforts in modeling single buildings. It addresses the challenge of modeling thermal behavior of a large neighborhood of buildings in order to calculate energy demands, regarding weather conditions, shading and room temperature settings with a time resolution below one hour. A proof of concept applies the method to a demonstration site of residential buildings and shows the heating demand and CO2 footprint of the neighborhood.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2016.04.081</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7788
ispartof Energy and buildings, 2016-08, Vol.125, p.153-160
issn 0378-7788
language eng
recordid cdi_proquest_miscellaneous_1825541445
source Elsevier ScienceDirect Journals
subjects Building optimization
Carbon dioxide
Co-simulation
Computational efficiency
Computing time
Demand
Economics
Energy efficiency
EnergyPlus
Mathematical models
Ptolemy
Thermal properties
Thermal simulation
title A new method for optimizing operation of large neighborhoods of buildings using thermal simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20method%20for%20optimizing%20operation%20of%20large%20neighborhoods%20of%20buildings%20using%20thermal%20simulation&rft.jtitle=Energy%20and%20buildings&rft.au=Zucker,%20Gerhard&rft.date=2016-08-01&rft.volume=125&rft.spage=153&rft.epage=160&rft.pages=153-160&rft.issn=0378-7788&rft_id=info:doi/10.1016/j.enbuild.2016.04.081&rft_dat=%3Cproquest_cross%3E1808724389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808724389&rft_id=info:pmid/&rft_els_id=S0378778816303589&rfr_iscdi=true