Decision support for long-range, community-based planning to mitigate against and recover from potential multiple disasters

This paper discusses a new mathematical model for community-driven disaster planning that is intended to help decision makers exploit the synergies resulting from simultaneously considering actions focusing on mitigation and efforts geared toward long-term recovery. The model is keyed on enabling lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Decision Support Systems 2016-07, Vol.87, p.13-25
Hauptverfasser: Chacko, Josey, Rees, Loren Paul, Zobel, Christopher W., Rakes, Terry R., Russell, Roberta S., Ragsdale, Cliff T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue
container_start_page 13
container_title Decision Support Systems
container_volume 87
creator Chacko, Josey
Rees, Loren Paul
Zobel, Christopher W.
Rakes, Terry R.
Russell, Roberta S.
Ragsdale, Cliff T.
description This paper discusses a new mathematical model for community-driven disaster planning that is intended to help decision makers exploit the synergies resulting from simultaneously considering actions focusing on mitigation and efforts geared toward long-term recovery. The model is keyed on enabling long-term community resilience in the face of potential disasters of varying types, frequencies, and severities, and the approach's highly iterative nature is facilitated by the model's implementation in the context of a decision support system. Three examples from Mombasa, Kenya, East Africa, are discussed and compared in order to demonstrate the advantages of the new mathematical model over the current ad hoc mitigation and long-term recovery planning approaches that are typically used. •Our DSS math model plans for risks from multiple, perhaps concurrent, hazard sources.•The DSS model examines dependencies arising under a multi-hazard planning model.•Unlike any other models, we include both long-term mitigation and recovery strategies.•We compare our model with two previous approaches to show benefits of our method.
doi_str_mv 10.1016/j.dss.2016.04.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825541363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167923616300586</els_id><sourcerecordid>4102321801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-bc8f88ba71da4604afe9adf0c90ea6f0de71b5b1bac6fd966a9065f0e9e75c123</originalsourceid><addsrcrecordid>eNp9kUGL1jAQhoMo-Ln6A7wFvHiwNWmbpMWT7OqusOBFzyFNJiUfbVIz6cLinzfL58mDpxmY5x3mnZeQt5y1nHH58dw6xLarbcuGljHxjJz4qPpGqEk9J6c6UM3U9fIleYV4Zkz2apQn8vsGbMCQIsVj31Mu1KdM1xSXJpu4wAdq07YdMZTHZjYIju6riTHEhZZEt1DCYgpQs5gQsVATHc1g0wNk6nPa6J4KxBLMSrdjLWFfgbqABgtkfE1eeLMivPlbr8jPr19-XN81999vv11_vm9sL8bSzHb04zgbxZ0ZJBuMh8k4z-zEwEjPHCg-i5nPxkrvJinNxKTwDCZQwvKuvyLvL3v3nH4dgEVvAS2s1QikAzUfOyEG3su-ou_-Qc_pyLFep7maplGJvmOV4hfK5oSYwes9h83kR82ZfopDn3WNQz_FodmgaxxV8-miger0IUDWaANECy7UhxXtUviP-g91M5Yy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799875320</pqid></control><display><type>article</type><title>Decision support for long-range, community-based planning to mitigate against and recover from potential multiple disasters</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Chacko, Josey ; Rees, Loren Paul ; Zobel, Christopher W. ; Rakes, Terry R. ; Russell, Roberta S. ; Ragsdale, Cliff T.</creator><creatorcontrib>Chacko, Josey ; Rees, Loren Paul ; Zobel, Christopher W. ; Rakes, Terry R. ; Russell, Roberta S. ; Ragsdale, Cliff T.</creatorcontrib><description>This paper discusses a new mathematical model for community-driven disaster planning that is intended to help decision makers exploit the synergies resulting from simultaneously considering actions focusing on mitigation and efforts geared toward long-term recovery. The model is keyed on enabling long-term community resilience in the face of potential disasters of varying types, frequencies, and severities, and the approach's highly iterative nature is facilitated by the model's implementation in the context of a decision support system. Three examples from Mombasa, Kenya, East Africa, are discussed and compared in order to demonstrate the advantages of the new mathematical model over the current ad hoc mitigation and long-term recovery planning approaches that are typically used. •Our DSS math model plans for risks from multiple, perhaps concurrent, hazard sources.•The DSS model examines dependencies arising under a multi-hazard planning model.•Unlike any other models, we include both long-term mitigation and recovery strategies.•We compare our model with two previous approaches to show benefits of our method.</description><identifier>ISSN: 0167-9236</identifier><identifier>EISSN: 1873-5797</identifier><identifier>DOI: 10.1016/j.dss.2016.04.005</identifier><identifier>CODEN: DSSYDK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Communities ; Decision support ; Decision support systems ; Disaster management ; Disaster planning ; Disaster relief ; Disasters ; Emergency preparedness ; Long term planning ; Mathematical models ; Mathematical programming ; Multi-hazard ; Recovery plans ; Resilience ; Studies ; Sustainability</subject><ispartof>Decision Support Systems, 2016-07, Vol.87, p.13-25</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jul 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-bc8f88ba71da4604afe9adf0c90ea6f0de71b5b1bac6fd966a9065f0e9e75c123</citedby><cites>FETCH-LOGICAL-c358t-bc8f88ba71da4604afe9adf0c90ea6f0de71b5b1bac6fd966a9065f0e9e75c123</cites><orcidid>0000-0002-9101-1607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167923616300586$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Chacko, Josey</creatorcontrib><creatorcontrib>Rees, Loren Paul</creatorcontrib><creatorcontrib>Zobel, Christopher W.</creatorcontrib><creatorcontrib>Rakes, Terry R.</creatorcontrib><creatorcontrib>Russell, Roberta S.</creatorcontrib><creatorcontrib>Ragsdale, Cliff T.</creatorcontrib><title>Decision support for long-range, community-based planning to mitigate against and recover from potential multiple disasters</title><title>Decision Support Systems</title><description>This paper discusses a new mathematical model for community-driven disaster planning that is intended to help decision makers exploit the synergies resulting from simultaneously considering actions focusing on mitigation and efforts geared toward long-term recovery. The model is keyed on enabling long-term community resilience in the face of potential disasters of varying types, frequencies, and severities, and the approach's highly iterative nature is facilitated by the model's implementation in the context of a decision support system. Three examples from Mombasa, Kenya, East Africa, are discussed and compared in order to demonstrate the advantages of the new mathematical model over the current ad hoc mitigation and long-term recovery planning approaches that are typically used. •Our DSS math model plans for risks from multiple, perhaps concurrent, hazard sources.•The DSS model examines dependencies arising under a multi-hazard planning model.•Unlike any other models, we include both long-term mitigation and recovery strategies.•We compare our model with two previous approaches to show benefits of our method.</description><subject>Communities</subject><subject>Decision support</subject><subject>Decision support systems</subject><subject>Disaster management</subject><subject>Disaster planning</subject><subject>Disaster relief</subject><subject>Disasters</subject><subject>Emergency preparedness</subject><subject>Long term planning</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Multi-hazard</subject><subject>Recovery plans</subject><subject>Resilience</subject><subject>Studies</subject><subject>Sustainability</subject><issn>0167-9236</issn><issn>1873-5797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kUGL1jAQhoMo-Ln6A7wFvHiwNWmbpMWT7OqusOBFzyFNJiUfbVIz6cLinzfL58mDpxmY5x3mnZeQt5y1nHH58dw6xLarbcuGljHxjJz4qPpGqEk9J6c6UM3U9fIleYV4Zkz2apQn8vsGbMCQIsVj31Mu1KdM1xSXJpu4wAdq07YdMZTHZjYIju6riTHEhZZEt1DCYgpQs5gQsVATHc1g0wNk6nPa6J4KxBLMSrdjLWFfgbqABgtkfE1eeLMivPlbr8jPr19-XN81999vv11_vm9sL8bSzHb04zgbxZ0ZJBuMh8k4z-zEwEjPHCg-i5nPxkrvJinNxKTwDCZQwvKuvyLvL3v3nH4dgEVvAS2s1QikAzUfOyEG3su-ou_-Qc_pyLFep7maplGJvmOV4hfK5oSYwes9h83kR82ZfopDn3WNQz_FodmgaxxV8-miger0IUDWaANECy7UhxXtUviP-g91M5Yy</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Chacko, Josey</creator><creator>Rees, Loren Paul</creator><creator>Zobel, Christopher W.</creator><creator>Rakes, Terry R.</creator><creator>Russell, Roberta S.</creator><creator>Ragsdale, Cliff T.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9101-1607</orcidid></search><sort><creationdate>201607</creationdate><title>Decision support for long-range, community-based planning to mitigate against and recover from potential multiple disasters</title><author>Chacko, Josey ; Rees, Loren Paul ; Zobel, Christopher W. ; Rakes, Terry R. ; Russell, Roberta S. ; Ragsdale, Cliff T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-bc8f88ba71da4604afe9adf0c90ea6f0de71b5b1bac6fd966a9065f0e9e75c123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Communities</topic><topic>Decision support</topic><topic>Decision support systems</topic><topic>Disaster management</topic><topic>Disaster planning</topic><topic>Disaster relief</topic><topic>Disasters</topic><topic>Emergency preparedness</topic><topic>Long term planning</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Multi-hazard</topic><topic>Recovery plans</topic><topic>Resilience</topic><topic>Studies</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chacko, Josey</creatorcontrib><creatorcontrib>Rees, Loren Paul</creatorcontrib><creatorcontrib>Zobel, Christopher W.</creatorcontrib><creatorcontrib>Rakes, Terry R.</creatorcontrib><creatorcontrib>Russell, Roberta S.</creatorcontrib><creatorcontrib>Ragsdale, Cliff T.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Decision Support Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chacko, Josey</au><au>Rees, Loren Paul</au><au>Zobel, Christopher W.</au><au>Rakes, Terry R.</au><au>Russell, Roberta S.</au><au>Ragsdale, Cliff T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decision support for long-range, community-based planning to mitigate against and recover from potential multiple disasters</atitle><jtitle>Decision Support Systems</jtitle><date>2016-07</date><risdate>2016</risdate><volume>87</volume><spage>13</spage><epage>25</epage><pages>13-25</pages><issn>0167-9236</issn><eissn>1873-5797</eissn><coden>DSSYDK</coden><abstract>This paper discusses a new mathematical model for community-driven disaster planning that is intended to help decision makers exploit the synergies resulting from simultaneously considering actions focusing on mitigation and efforts geared toward long-term recovery. The model is keyed on enabling long-term community resilience in the face of potential disasters of varying types, frequencies, and severities, and the approach's highly iterative nature is facilitated by the model's implementation in the context of a decision support system. Three examples from Mombasa, Kenya, East Africa, are discussed and compared in order to demonstrate the advantages of the new mathematical model over the current ad hoc mitigation and long-term recovery planning approaches that are typically used. •Our DSS math model plans for risks from multiple, perhaps concurrent, hazard sources.•The DSS model examines dependencies arising under a multi-hazard planning model.•Unlike any other models, we include both long-term mitigation and recovery strategies.•We compare our model with two previous approaches to show benefits of our method.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dss.2016.04.005</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9101-1607</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-9236
ispartof Decision Support Systems, 2016-07, Vol.87, p.13-25
issn 0167-9236
1873-5797
language eng
recordid cdi_proquest_miscellaneous_1825541363
source Elsevier ScienceDirect Journals Complete
subjects Communities
Decision support
Decision support systems
Disaster management
Disaster planning
Disaster relief
Disasters
Emergency preparedness
Long term planning
Mathematical models
Mathematical programming
Multi-hazard
Recovery plans
Resilience
Studies
Sustainability
title Decision support for long-range, community-based planning to mitigate against and recover from potential multiple disasters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decision%20support%20for%20long-range,%20community-based%20planning%20to%20mitigate%20against%20and%20recover%20from%20potential%20multiple%20disasters&rft.jtitle=Decision%20Support%20Systems&rft.au=Chacko,%20Josey&rft.date=2016-07&rft.volume=87&rft.spage=13&rft.epage=25&rft.pages=13-25&rft.issn=0167-9236&rft.eissn=1873-5797&rft.coden=DSSYDK&rft_id=info:doi/10.1016/j.dss.2016.04.005&rft_dat=%3Cproquest_cross%3E4102321801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799875320&rft_id=info:pmid/&rft_els_id=S0167923616300586&rfr_iscdi=true