Renormalized powers of Ornstein–Uhlenbeck processes and well-posedness of stochastic Ginzburg–Landau equations
This article analyzes well-definedness and regularity of renormalized powers of Ornstein–Uhlenbeck processes and uses this analysis to establish local existence, uniqueness and regularity of strong solutions of stochastic Ginzburg–Landau equations with polynomial nonlinearities in two space dimensio...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2016-09, Vol.142, p.152-193 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | |
container_start_page | 152 |
container_title | Nonlinear analysis |
container_volume | 142 |
creator | E, Weinan Jentzen, Arnulf Shen, Hao |
description | This article analyzes well-definedness and regularity of renormalized powers of Ornstein–Uhlenbeck processes and uses this analysis to establish local existence, uniqueness and regularity of strong solutions of stochastic Ginzburg–Landau equations with polynomial nonlinearities in two space dimensions and with quadratic nonlinearities in three space dimensions. |
doi_str_mv | 10.1016/j.na.2016.03.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825541321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X16000730</els_id><sourcerecordid>1825541321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-fb766f8853c0906049635e1963530de6bfbfebb96caf999efb2acdcdcfef13d13</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKt3j3v0smuy6aZdbyJahUJBLHgL2ezEpm6TNrNrsSffwTf0ScxSrzIwMwz_N8z8hFwymjHKxPUqcyrLY5dRnlHKjsiATcY8LXJWHJMB5SJPi5F4PSVniCsaFWMuBiQ8g_NhrRq7hzrZ-B0ETLxJ5sFhC9b9fH0vlg24CvR7sgleAyJgolyd7KBp0o1HqF0c9hC2Xi8VtlYnU-v2VRfeIj-LYtUlsO1Ua73Dc3JiVINw8VeHZPFw_3L3mM7m06e721mqecnb1FRjIcxkUnBNSyroqBS8ANZnTmsQlakMVFUptDJlWYKpcqXrGAYM4zXjQ3J12BvP3naArVxb1PFo5cB3KNkkL4oR43kvpQepDh4xgJGbYNcqfEpGZW-vXEmnZG-vpFxG8yJyc0AgvvBhIUjUFpyG2gbQray9_R_-BRiAh6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825541321</pqid></control><display><type>article</type><title>Renormalized powers of Ornstein–Uhlenbeck processes and well-posedness of stochastic Ginzburg–Landau equations</title><source>Elsevier ScienceDirect Journals</source><creator>E, Weinan ; Jentzen, Arnulf ; Shen, Hao</creator><creatorcontrib>E, Weinan ; Jentzen, Arnulf ; Shen, Hao</creatorcontrib><description>This article analyzes well-definedness and regularity of renormalized powers of Ornstein–Uhlenbeck processes and uses this analysis to establish local existence, uniqueness and regularity of strong solutions of stochastic Ginzburg–Landau equations with polynomial nonlinearities in two space dimensions and with quadratic nonlinearities in three space dimensions.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2016.03.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Mathematical analysis ; Nonlinearity ; Ornstein-Uhlenbeck process ; Polynomials ; Regularity ; Renormalization ; Stochastic Ginzburg–Landau equations ; Stochasticity ; Uniqueness</subject><ispartof>Nonlinear analysis, 2016-09, Vol.142, p.152-193</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-fb766f8853c0906049635e1963530de6bfbfebb96caf999efb2acdcdcfef13d13</citedby><cites>FETCH-LOGICAL-c393t-fb766f8853c0906049635e1963530de6bfbfebb96caf999efb2acdcdcfef13d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X16000730$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>E, Weinan</creatorcontrib><creatorcontrib>Jentzen, Arnulf</creatorcontrib><creatorcontrib>Shen, Hao</creatorcontrib><title>Renormalized powers of Ornstein–Uhlenbeck processes and well-posedness of stochastic Ginzburg–Landau equations</title><title>Nonlinear analysis</title><description>This article analyzes well-definedness and regularity of renormalized powers of Ornstein–Uhlenbeck processes and uses this analysis to establish local existence, uniqueness and regularity of strong solutions of stochastic Ginzburg–Landau equations with polynomial nonlinearities in two space dimensions and with quadratic nonlinearities in three space dimensions.</description><subject>Mathematical analysis</subject><subject>Nonlinearity</subject><subject>Ornstein-Uhlenbeck process</subject><subject>Polynomials</subject><subject>Regularity</subject><subject>Renormalization</subject><subject>Stochastic Ginzburg–Landau equations</subject><subject>Stochasticity</subject><subject>Uniqueness</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKt3j3v0smuy6aZdbyJahUJBLHgL2ezEpm6TNrNrsSffwTf0ScxSrzIwMwz_N8z8hFwymjHKxPUqcyrLY5dRnlHKjsiATcY8LXJWHJMB5SJPi5F4PSVniCsaFWMuBiQ8g_NhrRq7hzrZ-B0ETLxJ5sFhC9b9fH0vlg24CvR7sgleAyJgolyd7KBp0o1HqF0c9hC2Xi8VtlYnU-v2VRfeIj-LYtUlsO1Ua73Dc3JiVINw8VeHZPFw_3L3mM7m06e721mqecnb1FRjIcxkUnBNSyroqBS8ANZnTmsQlakMVFUptDJlWYKpcqXrGAYM4zXjQ3J12BvP3naArVxb1PFo5cB3KNkkL4oR43kvpQepDh4xgJGbYNcqfEpGZW-vXEmnZG-vpFxG8yJyc0AgvvBhIUjUFpyG2gbQray9_R_-BRiAh6U</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>E, Weinan</creator><creator>Jentzen, Arnulf</creator><creator>Shen, Hao</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201609</creationdate><title>Renormalized powers of Ornstein–Uhlenbeck processes and well-posedness of stochastic Ginzburg–Landau equations</title><author>E, Weinan ; Jentzen, Arnulf ; Shen, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-fb766f8853c0906049635e1963530de6bfbfebb96caf999efb2acdcdcfef13d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Mathematical analysis</topic><topic>Nonlinearity</topic><topic>Ornstein-Uhlenbeck process</topic><topic>Polynomials</topic><topic>Regularity</topic><topic>Renormalization</topic><topic>Stochastic Ginzburg–Landau equations</topic><topic>Stochasticity</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>E, Weinan</creatorcontrib><creatorcontrib>Jentzen, Arnulf</creatorcontrib><creatorcontrib>Shen, Hao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>E, Weinan</au><au>Jentzen, Arnulf</au><au>Shen, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Renormalized powers of Ornstein–Uhlenbeck processes and well-posedness of stochastic Ginzburg–Landau equations</atitle><jtitle>Nonlinear analysis</jtitle><date>2016-09</date><risdate>2016</risdate><volume>142</volume><spage>152</spage><epage>193</epage><pages>152-193</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>This article analyzes well-definedness and regularity of renormalized powers of Ornstein–Uhlenbeck processes and uses this analysis to establish local existence, uniqueness and regularity of strong solutions of stochastic Ginzburg–Landau equations with polynomial nonlinearities in two space dimensions and with quadratic nonlinearities in three space dimensions.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2016.03.001</doi><tpages>42</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2016-09, Vol.142, p.152-193 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825541321 |
source | Elsevier ScienceDirect Journals |
subjects | Mathematical analysis Nonlinearity Ornstein-Uhlenbeck process Polynomials Regularity Renormalization Stochastic Ginzburg–Landau equations Stochasticity Uniqueness |
title | Renormalized powers of Ornstein–Uhlenbeck processes and well-posedness of stochastic Ginzburg–Landau equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A12%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renormalized%20powers%20of%20Ornstein%E2%80%93Uhlenbeck%20processes%20and%20well-posedness%20of%20stochastic%20Ginzburg%E2%80%93Landau%20equations&rft.jtitle=Nonlinear%20analysis&rft.au=E,%20Weinan&rft.date=2016-09&rft.volume=142&rft.spage=152&rft.epage=193&rft.pages=152-193&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2016.03.001&rft_dat=%3Cproquest_cross%3E1825541321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825541321&rft_id=info:pmid/&rft_els_id=S0362546X16000730&rfr_iscdi=true |