Renormalized powers of Ornstein–Uhlenbeck processes and well-posedness of stochastic Ginzburg–Landau equations

This article analyzes well-definedness and regularity of renormalized powers of Ornstein–Uhlenbeck processes and uses this analysis to establish local existence, uniqueness and regularity of strong solutions of stochastic Ginzburg–Landau equations with polynomial nonlinearities in two space dimensio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2016-09, Vol.142, p.152-193
Hauptverfasser: E, Weinan, Jentzen, Arnulf, Shen, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue
container_start_page 152
container_title Nonlinear analysis
container_volume 142
creator E, Weinan
Jentzen, Arnulf
Shen, Hao
description This article analyzes well-definedness and regularity of renormalized powers of Ornstein–Uhlenbeck processes and uses this analysis to establish local existence, uniqueness and regularity of strong solutions of stochastic Ginzburg–Landau equations with polynomial nonlinearities in two space dimensions and with quadratic nonlinearities in three space dimensions.
doi_str_mv 10.1016/j.na.2016.03.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825541321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X16000730</els_id><sourcerecordid>1825541321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-fb766f8853c0906049635e1963530de6bfbfebb96caf999efb2acdcdcfef13d13</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKt3j3v0smuy6aZdbyJahUJBLHgL2ezEpm6TNrNrsSffwTf0ScxSrzIwMwz_N8z8hFwymjHKxPUqcyrLY5dRnlHKjsiATcY8LXJWHJMB5SJPi5F4PSVniCsaFWMuBiQ8g_NhrRq7hzrZ-B0ETLxJ5sFhC9b9fH0vlg24CvR7sgleAyJgolyd7KBp0o1HqF0c9hC2Xi8VtlYnU-v2VRfeIj-LYtUlsO1Ua73Dc3JiVINw8VeHZPFw_3L3mM7m06e721mqecnb1FRjIcxkUnBNSyroqBS8ANZnTmsQlakMVFUptDJlWYKpcqXrGAYM4zXjQ3J12BvP3naArVxb1PFo5cB3KNkkL4oR43kvpQepDh4xgJGbYNcqfEpGZW-vXEmnZG-vpFxG8yJyc0AgvvBhIUjUFpyG2gbQray9_R_-BRiAh6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825541321</pqid></control><display><type>article</type><title>Renormalized powers of Ornstein–Uhlenbeck processes and well-posedness of stochastic Ginzburg–Landau equations</title><source>Elsevier ScienceDirect Journals</source><creator>E, Weinan ; Jentzen, Arnulf ; Shen, Hao</creator><creatorcontrib>E, Weinan ; Jentzen, Arnulf ; Shen, Hao</creatorcontrib><description>This article analyzes well-definedness and regularity of renormalized powers of Ornstein–Uhlenbeck processes and uses this analysis to establish local existence, uniqueness and regularity of strong solutions of stochastic Ginzburg–Landau equations with polynomial nonlinearities in two space dimensions and with quadratic nonlinearities in three space dimensions.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2016.03.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Mathematical analysis ; Nonlinearity ; Ornstein-Uhlenbeck process ; Polynomials ; Regularity ; Renormalization ; Stochastic Ginzburg–Landau equations ; Stochasticity ; Uniqueness</subject><ispartof>Nonlinear analysis, 2016-09, Vol.142, p.152-193</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-fb766f8853c0906049635e1963530de6bfbfebb96caf999efb2acdcdcfef13d13</citedby><cites>FETCH-LOGICAL-c393t-fb766f8853c0906049635e1963530de6bfbfebb96caf999efb2acdcdcfef13d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X16000730$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>E, Weinan</creatorcontrib><creatorcontrib>Jentzen, Arnulf</creatorcontrib><creatorcontrib>Shen, Hao</creatorcontrib><title>Renormalized powers of Ornstein–Uhlenbeck processes and well-posedness of stochastic Ginzburg–Landau equations</title><title>Nonlinear analysis</title><description>This article analyzes well-definedness and regularity of renormalized powers of Ornstein–Uhlenbeck processes and uses this analysis to establish local existence, uniqueness and regularity of strong solutions of stochastic Ginzburg–Landau equations with polynomial nonlinearities in two space dimensions and with quadratic nonlinearities in three space dimensions.</description><subject>Mathematical analysis</subject><subject>Nonlinearity</subject><subject>Ornstein-Uhlenbeck process</subject><subject>Polynomials</subject><subject>Regularity</subject><subject>Renormalization</subject><subject>Stochastic Ginzburg–Landau equations</subject><subject>Stochasticity</subject><subject>Uniqueness</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKt3j3v0smuy6aZdbyJahUJBLHgL2ezEpm6TNrNrsSffwTf0ScxSrzIwMwz_N8z8hFwymjHKxPUqcyrLY5dRnlHKjsiATcY8LXJWHJMB5SJPi5F4PSVniCsaFWMuBiQ8g_NhrRq7hzrZ-B0ETLxJ5sFhC9b9fH0vlg24CvR7sgleAyJgolyd7KBp0o1HqF0c9hC2Xi8VtlYnU-v2VRfeIj-LYtUlsO1Ua73Dc3JiVINw8VeHZPFw_3L3mM7m06e721mqecnb1FRjIcxkUnBNSyroqBS8ANZnTmsQlakMVFUptDJlWYKpcqXrGAYM4zXjQ3J12BvP3naArVxb1PFo5cB3KNkkL4oR43kvpQepDh4xgJGbYNcqfEpGZW-vXEmnZG-vpFxG8yJyc0AgvvBhIUjUFpyG2gbQray9_R_-BRiAh6U</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>E, Weinan</creator><creator>Jentzen, Arnulf</creator><creator>Shen, Hao</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201609</creationdate><title>Renormalized powers of Ornstein–Uhlenbeck processes and well-posedness of stochastic Ginzburg–Landau equations</title><author>E, Weinan ; Jentzen, Arnulf ; Shen, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-fb766f8853c0906049635e1963530de6bfbfebb96caf999efb2acdcdcfef13d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Mathematical analysis</topic><topic>Nonlinearity</topic><topic>Ornstein-Uhlenbeck process</topic><topic>Polynomials</topic><topic>Regularity</topic><topic>Renormalization</topic><topic>Stochastic Ginzburg–Landau equations</topic><topic>Stochasticity</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>E, Weinan</creatorcontrib><creatorcontrib>Jentzen, Arnulf</creatorcontrib><creatorcontrib>Shen, Hao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>E, Weinan</au><au>Jentzen, Arnulf</au><au>Shen, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Renormalized powers of Ornstein–Uhlenbeck processes and well-posedness of stochastic Ginzburg–Landau equations</atitle><jtitle>Nonlinear analysis</jtitle><date>2016-09</date><risdate>2016</risdate><volume>142</volume><spage>152</spage><epage>193</epage><pages>152-193</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>This article analyzes well-definedness and regularity of renormalized powers of Ornstein–Uhlenbeck processes and uses this analysis to establish local existence, uniqueness and regularity of strong solutions of stochastic Ginzburg–Landau equations with polynomial nonlinearities in two space dimensions and with quadratic nonlinearities in three space dimensions.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2016.03.001</doi><tpages>42</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2016-09, Vol.142, p.152-193
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_1825541321
source Elsevier ScienceDirect Journals
subjects Mathematical analysis
Nonlinearity
Ornstein-Uhlenbeck process
Polynomials
Regularity
Renormalization
Stochastic Ginzburg–Landau equations
Stochasticity
Uniqueness
title Renormalized powers of Ornstein–Uhlenbeck processes and well-posedness of stochastic Ginzburg–Landau equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A12%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renormalized%20powers%20of%20Ornstein%E2%80%93Uhlenbeck%20processes%20and%20well-posedness%20of%20stochastic%20Ginzburg%E2%80%93Landau%20equations&rft.jtitle=Nonlinear%20analysis&rft.au=E,%20Weinan&rft.date=2016-09&rft.volume=142&rft.spage=152&rft.epage=193&rft.pages=152-193&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2016.03.001&rft_dat=%3Cproquest_cross%3E1825541321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825541321&rft_id=info:pmid/&rft_els_id=S0362546X16000730&rfr_iscdi=true