Optimizing calculations of coupling matrix in Hindmarsh–Rose neural network
In this paper, to research the relationship between network synchronous dynamics and the optimal coupling mode, we have constructed the coupled network structure with the Hindmarsh–Rose (HR) neuron cells as the unit and found out the optimal coupling matrix, by using the chaos ant swarm optimization...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2016-05, Vol.84 (3), p.1303-1310 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1310 |
---|---|
container_issue | 3 |
container_start_page | 1303 |
container_title | Nonlinear dynamics |
container_volume | 84 |
creator | Zhang, Jiqian Huang, Shoufang Pang, Sitao Wang, Maosheng Gao, Sheng |
description | In this paper, to research the relationship between network synchronous dynamics and the optimal coupling mode, we have constructed the coupled network structure with the Hindmarsh–Rose (HR) neuron cells as the unit and found out the optimal coupling matrix, by using the chaos ant swarm optimization (CASO) algorithm. Some typical coupled networks from all the coupled configurations are selected for analysis. Furthermore, to further verify the results of the optimization algorithm, a network of 42 cell units is constructed and the synchronization behavior is compared in both the optimization and non-optimized coupling topology. Our results indicate that proper coupling matrix of HR neural network could be obtained by means of CASO algorithm. |
doi_str_mv | 10.1007/s11071-015-2569-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825540943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825540943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-3940027b4002fda44f8be3a5daa0541bfcdb06f6d77c2f6bcb7faaa569266c643</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOI4-gLuCGzfVmzRtpksZ1BFGBkRhdiFNkzFj29SkxZ-V7-Ab-iSmVBAEN_cs7ncu9xyEjjGcYQB27jEGhmPAaUzSLI9hB01wypKYZPl6F00gJzSGHNb76MD7LQAkBGYTdLtqO1Obd9NsIikq2VeiM7bxkdWRtH1bDYtadM68RqaJFqYpa-H849fH5531KmpU70QVpHux7ukQ7WlReXX0o1P0cHV5P1_Ey9X1zfxiGcuE5l2c5BSAsGKYuhSU6lmhEpGWQkBKcaFlWUCms5IxSXRWyIJpIUTIRbJMZjSZotPxbuvsc698x2vjpaoq0Sjbe45nJE0p5DQJ6MkfdGt714TvOCHpQGDGAoVHSjrrvVOat86EoG8cAx8K5mPBPBTMh4I5BA8ZPT6wzUa538v_m74Bsmt_ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259433177</pqid></control><display><type>article</type><title>Optimizing calculations of coupling matrix in Hindmarsh–Rose neural network</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Jiqian ; Huang, Shoufang ; Pang, Sitao ; Wang, Maosheng ; Gao, Sheng</creator><creatorcontrib>Zhang, Jiqian ; Huang, Shoufang ; Pang, Sitao ; Wang, Maosheng ; Gao, Sheng</creatorcontrib><description>In this paper, to research the relationship between network synchronous dynamics and the optimal coupling mode, we have constructed the coupled network structure with the Hindmarsh–Rose (HR) neuron cells as the unit and found out the optimal coupling matrix, by using the chaos ant swarm optimization (CASO) algorithm. Some typical coupled networks from all the coupled configurations are selected for analysis. Furthermore, to further verify the results of the optimization algorithm, a network of 42 cell units is constructed and the synchronization behavior is compared in both the optimization and non-optimized coupling topology. Our results indicate that proper coupling matrix of HR neural network could be obtained by means of CASO algorithm.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-015-2569-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Automotive Engineering ; Classical Mechanics ; Construction ; Control ; Coupling ; Dynamical Systems ; Engineering ; Joining ; Mechanical Engineering ; Networks ; Neural networks ; Nonlinear dynamics ; Optimization ; Original Paper ; Synchronism ; Topology optimization ; Vibration</subject><ispartof>Nonlinear dynamics, 2016-05, Vol.84 (3), p.1303-1310</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-3940027b4002fda44f8be3a5daa0541bfcdb06f6d77c2f6bcb7faaa569266c643</citedby><cites>FETCH-LOGICAL-c349t-3940027b4002fda44f8be3a5daa0541bfcdb06f6d77c2f6bcb7faaa569266c643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-015-2569-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-015-2569-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Zhang, Jiqian</creatorcontrib><creatorcontrib>Huang, Shoufang</creatorcontrib><creatorcontrib>Pang, Sitao</creatorcontrib><creatorcontrib>Wang, Maosheng</creatorcontrib><creatorcontrib>Gao, Sheng</creatorcontrib><title>Optimizing calculations of coupling matrix in Hindmarsh–Rose neural network</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, to research the relationship between network synchronous dynamics and the optimal coupling mode, we have constructed the coupled network structure with the Hindmarsh–Rose (HR) neuron cells as the unit and found out the optimal coupling matrix, by using the chaos ant swarm optimization (CASO) algorithm. Some typical coupled networks from all the coupled configurations are selected for analysis. Furthermore, to further verify the results of the optimization algorithm, a network of 42 cell units is constructed and the synchronization behavior is compared in both the optimization and non-optimized coupling topology. Our results indicate that proper coupling matrix of HR neural network could be obtained by means of CASO algorithm.</description><subject>Algorithms</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Construction</subject><subject>Control</subject><subject>Coupling</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Joining</subject><subject>Mechanical Engineering</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Nonlinear dynamics</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Synchronism</subject><subject>Topology optimization</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1KxDAUhYMoOI4-gLuCGzfVmzRtpksZ1BFGBkRhdiFNkzFj29SkxZ-V7-Ab-iSmVBAEN_cs7ncu9xyEjjGcYQB27jEGhmPAaUzSLI9hB01wypKYZPl6F00gJzSGHNb76MD7LQAkBGYTdLtqO1Obd9NsIikq2VeiM7bxkdWRtH1bDYtadM68RqaJFqYpa-H849fH5531KmpU70QVpHux7ukQ7WlReXX0o1P0cHV5P1_Ey9X1zfxiGcuE5l2c5BSAsGKYuhSU6lmhEpGWQkBKcaFlWUCms5IxSXRWyIJpIUTIRbJMZjSZotPxbuvsc698x2vjpaoq0Sjbe45nJE0p5DQJ6MkfdGt714TvOCHpQGDGAoVHSjrrvVOat86EoG8cAx8K5mPBPBTMh4I5BA8ZPT6wzUa538v_m74Bsmt_ew</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Zhang, Jiqian</creator><creator>Huang, Shoufang</creator><creator>Pang, Sitao</creator><creator>Wang, Maosheng</creator><creator>Gao, Sheng</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160501</creationdate><title>Optimizing calculations of coupling matrix in Hindmarsh–Rose neural network</title><author>Zhang, Jiqian ; Huang, Shoufang ; Pang, Sitao ; Wang, Maosheng ; Gao, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-3940027b4002fda44f8be3a5daa0541bfcdb06f6d77c2f6bcb7faaa569266c643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Construction</topic><topic>Control</topic><topic>Coupling</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Joining</topic><topic>Mechanical Engineering</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Nonlinear dynamics</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Synchronism</topic><topic>Topology optimization</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiqian</creatorcontrib><creatorcontrib>Huang, Shoufang</creatorcontrib><creatorcontrib>Pang, Sitao</creatorcontrib><creatorcontrib>Wang, Maosheng</creatorcontrib><creatorcontrib>Gao, Sheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jiqian</au><au>Huang, Shoufang</au><au>Pang, Sitao</au><au>Wang, Maosheng</au><au>Gao, Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing calculations of coupling matrix in Hindmarsh–Rose neural network</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>84</volume><issue>3</issue><spage>1303</spage><epage>1310</epage><pages>1303-1310</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, to research the relationship between network synchronous dynamics and the optimal coupling mode, we have constructed the coupled network structure with the Hindmarsh–Rose (HR) neuron cells as the unit and found out the optimal coupling matrix, by using the chaos ant swarm optimization (CASO) algorithm. Some typical coupled networks from all the coupled configurations are selected for analysis. Furthermore, to further verify the results of the optimization algorithm, a network of 42 cell units is constructed and the synchronization behavior is compared in both the optimization and non-optimized coupling topology. Our results indicate that proper coupling matrix of HR neural network could be obtained by means of CASO algorithm.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-015-2569-0</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2016-05, Vol.84 (3), p.1303-1310 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_miscellaneous_1825540943 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Automotive Engineering Classical Mechanics Construction Control Coupling Dynamical Systems Engineering Joining Mechanical Engineering Networks Neural networks Nonlinear dynamics Optimization Original Paper Synchronism Topology optimization Vibration |
title | Optimizing calculations of coupling matrix in Hindmarsh–Rose neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20calculations%20of%20coupling%20matrix%20in%20Hindmarsh%E2%80%93Rose%20neural%20network&rft.jtitle=Nonlinear%20dynamics&rft.au=Zhang,%20Jiqian&rft.date=2016-05-01&rft.volume=84&rft.issue=3&rft.spage=1303&rft.epage=1310&rft.pages=1303-1310&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-015-2569-0&rft_dat=%3Cproquest_cross%3E1825540943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259433177&rft_id=info:pmid/&rfr_iscdi=true |