Optimizing calculations of coupling matrix in Hindmarsh–Rose neural network

In this paper, to research the relationship between network synchronous dynamics and the optimal coupling mode, we have constructed the coupled network structure with the Hindmarsh–Rose (HR) neuron cells as the unit and found out the optimal coupling matrix, by using the chaos ant swarm optimization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2016-05, Vol.84 (3), p.1303-1310
Hauptverfasser: Zhang, Jiqian, Huang, Shoufang, Pang, Sitao, Wang, Maosheng, Gao, Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1310
container_issue 3
container_start_page 1303
container_title Nonlinear dynamics
container_volume 84
creator Zhang, Jiqian
Huang, Shoufang
Pang, Sitao
Wang, Maosheng
Gao, Sheng
description In this paper, to research the relationship between network synchronous dynamics and the optimal coupling mode, we have constructed the coupled network structure with the Hindmarsh–Rose (HR) neuron cells as the unit and found out the optimal coupling matrix, by using the chaos ant swarm optimization (CASO) algorithm. Some typical coupled networks from all the coupled configurations are selected for analysis. Furthermore, to further verify the results of the optimization algorithm, a network of 42 cell units is constructed and the synchronization behavior is compared in both the optimization and non-optimized coupling topology. Our results indicate that proper coupling matrix of HR neural network could be obtained by means of CASO algorithm.
doi_str_mv 10.1007/s11071-015-2569-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825540943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825540943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-3940027b4002fda44f8be3a5daa0541bfcdb06f6d77c2f6bcb7faaa569266c643</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOI4-gLuCGzfVmzRtpksZ1BFGBkRhdiFNkzFj29SkxZ-V7-Ab-iSmVBAEN_cs7ncu9xyEjjGcYQB27jEGhmPAaUzSLI9hB01wypKYZPl6F00gJzSGHNb76MD7LQAkBGYTdLtqO1Obd9NsIikq2VeiM7bxkdWRtH1bDYtadM68RqaJFqYpa-H849fH5531KmpU70QVpHux7ukQ7WlReXX0o1P0cHV5P1_Ey9X1zfxiGcuE5l2c5BSAsGKYuhSU6lmhEpGWQkBKcaFlWUCms5IxSXRWyIJpIUTIRbJMZjSZotPxbuvsc698x2vjpaoq0Sjbe45nJE0p5DQJ6MkfdGt714TvOCHpQGDGAoVHSjrrvVOat86EoG8cAx8K5mPBPBTMh4I5BA8ZPT6wzUa538v_m74Bsmt_ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259433177</pqid></control><display><type>article</type><title>Optimizing calculations of coupling matrix in Hindmarsh–Rose neural network</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Jiqian ; Huang, Shoufang ; Pang, Sitao ; Wang, Maosheng ; Gao, Sheng</creator><creatorcontrib>Zhang, Jiqian ; Huang, Shoufang ; Pang, Sitao ; Wang, Maosheng ; Gao, Sheng</creatorcontrib><description>In this paper, to research the relationship between network synchronous dynamics and the optimal coupling mode, we have constructed the coupled network structure with the Hindmarsh–Rose (HR) neuron cells as the unit and found out the optimal coupling matrix, by using the chaos ant swarm optimization (CASO) algorithm. Some typical coupled networks from all the coupled configurations are selected for analysis. Furthermore, to further verify the results of the optimization algorithm, a network of 42 cell units is constructed and the synchronization behavior is compared in both the optimization and non-optimized coupling topology. Our results indicate that proper coupling matrix of HR neural network could be obtained by means of CASO algorithm.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-015-2569-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Automotive Engineering ; Classical Mechanics ; Construction ; Control ; Coupling ; Dynamical Systems ; Engineering ; Joining ; Mechanical Engineering ; Networks ; Neural networks ; Nonlinear dynamics ; Optimization ; Original Paper ; Synchronism ; Topology optimization ; Vibration</subject><ispartof>Nonlinear dynamics, 2016-05, Vol.84 (3), p.1303-1310</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-3940027b4002fda44f8be3a5daa0541bfcdb06f6d77c2f6bcb7faaa569266c643</citedby><cites>FETCH-LOGICAL-c349t-3940027b4002fda44f8be3a5daa0541bfcdb06f6d77c2f6bcb7faaa569266c643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-015-2569-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-015-2569-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Zhang, Jiqian</creatorcontrib><creatorcontrib>Huang, Shoufang</creatorcontrib><creatorcontrib>Pang, Sitao</creatorcontrib><creatorcontrib>Wang, Maosheng</creatorcontrib><creatorcontrib>Gao, Sheng</creatorcontrib><title>Optimizing calculations of coupling matrix in Hindmarsh–Rose neural network</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, to research the relationship between network synchronous dynamics and the optimal coupling mode, we have constructed the coupled network structure with the Hindmarsh–Rose (HR) neuron cells as the unit and found out the optimal coupling matrix, by using the chaos ant swarm optimization (CASO) algorithm. Some typical coupled networks from all the coupled configurations are selected for analysis. Furthermore, to further verify the results of the optimization algorithm, a network of 42 cell units is constructed and the synchronization behavior is compared in both the optimization and non-optimized coupling topology. Our results indicate that proper coupling matrix of HR neural network could be obtained by means of CASO algorithm.</description><subject>Algorithms</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Construction</subject><subject>Control</subject><subject>Coupling</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Joining</subject><subject>Mechanical Engineering</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Nonlinear dynamics</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Synchronism</subject><subject>Topology optimization</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1KxDAUhYMoOI4-gLuCGzfVmzRtpksZ1BFGBkRhdiFNkzFj29SkxZ-V7-Ab-iSmVBAEN_cs7ncu9xyEjjGcYQB27jEGhmPAaUzSLI9hB01wypKYZPl6F00gJzSGHNb76MD7LQAkBGYTdLtqO1Obd9NsIikq2VeiM7bxkdWRtH1bDYtadM68RqaJFqYpa-H849fH5531KmpU70QVpHux7ukQ7WlReXX0o1P0cHV5P1_Ey9X1zfxiGcuE5l2c5BSAsGKYuhSU6lmhEpGWQkBKcaFlWUCms5IxSXRWyIJpIUTIRbJMZjSZotPxbuvsc698x2vjpaoq0Sjbe45nJE0p5DQJ6MkfdGt714TvOCHpQGDGAoVHSjrrvVOat86EoG8cAx8K5mPBPBTMh4I5BA8ZPT6wzUa538v_m74Bsmt_ew</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Zhang, Jiqian</creator><creator>Huang, Shoufang</creator><creator>Pang, Sitao</creator><creator>Wang, Maosheng</creator><creator>Gao, Sheng</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160501</creationdate><title>Optimizing calculations of coupling matrix in Hindmarsh–Rose neural network</title><author>Zhang, Jiqian ; Huang, Shoufang ; Pang, Sitao ; Wang, Maosheng ; Gao, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-3940027b4002fda44f8be3a5daa0541bfcdb06f6d77c2f6bcb7faaa569266c643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Construction</topic><topic>Control</topic><topic>Coupling</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Joining</topic><topic>Mechanical Engineering</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Nonlinear dynamics</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Synchronism</topic><topic>Topology optimization</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiqian</creatorcontrib><creatorcontrib>Huang, Shoufang</creatorcontrib><creatorcontrib>Pang, Sitao</creatorcontrib><creatorcontrib>Wang, Maosheng</creatorcontrib><creatorcontrib>Gao, Sheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jiqian</au><au>Huang, Shoufang</au><au>Pang, Sitao</au><au>Wang, Maosheng</au><au>Gao, Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing calculations of coupling matrix in Hindmarsh–Rose neural network</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>84</volume><issue>3</issue><spage>1303</spage><epage>1310</epage><pages>1303-1310</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, to research the relationship between network synchronous dynamics and the optimal coupling mode, we have constructed the coupled network structure with the Hindmarsh–Rose (HR) neuron cells as the unit and found out the optimal coupling matrix, by using the chaos ant swarm optimization (CASO) algorithm. Some typical coupled networks from all the coupled configurations are selected for analysis. Furthermore, to further verify the results of the optimization algorithm, a network of 42 cell units is constructed and the synchronization behavior is compared in both the optimization and non-optimized coupling topology. Our results indicate that proper coupling matrix of HR neural network could be obtained by means of CASO algorithm.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-015-2569-0</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2016-05, Vol.84 (3), p.1303-1310
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_miscellaneous_1825540943
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Automotive Engineering
Classical Mechanics
Construction
Control
Coupling
Dynamical Systems
Engineering
Joining
Mechanical Engineering
Networks
Neural networks
Nonlinear dynamics
Optimization
Original Paper
Synchronism
Topology optimization
Vibration
title Optimizing calculations of coupling matrix in Hindmarsh–Rose neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20calculations%20of%20coupling%20matrix%20in%20Hindmarsh%E2%80%93Rose%20neural%20network&rft.jtitle=Nonlinear%20dynamics&rft.au=Zhang,%20Jiqian&rft.date=2016-05-01&rft.volume=84&rft.issue=3&rft.spage=1303&rft.epage=1310&rft.pages=1303-1310&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-015-2569-0&rft_dat=%3Cproquest_cross%3E1825540943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259433177&rft_id=info:pmid/&rfr_iscdi=true