Efficient Temperature-Dependent Green’s Function Methods for Realistic Systems: Using Cubic Spline Interpolation to Approximate Matsubara Green’s Functions
The popular, stable, robust, and computationally inexpensive cubic spline interpolation algorithm is adopted and used for finite temperature Green’s function calculations of realistic systems. We demonstrate that with appropriate modifications the temperature dependence can be preserved while the Gr...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2016-05, Vol.12 (5), p.2250-2259 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2259 |
---|---|
container_issue | 5 |
container_start_page | 2250 |
container_title | Journal of chemical theory and computation |
container_volume | 12 |
creator | Kananenka, Alexei A Welden, Alicia Rae Lan, Tran Nguyen Gull, Emanuel Zgid, Dominika |
description | The popular, stable, robust, and computationally inexpensive cubic spline interpolation algorithm is adopted and used for finite temperature Green’s function calculations of realistic systems. We demonstrate that with appropriate modifications the temperature dependence can be preserved while the Green’s function grid size can be reduced by about 2 orders of magnitude by replacing the standard Matsubara frequency grid with a sparser grid and a set of interpolation coefficients. We benchmarked the accuracy of our algorithm as a function of a single parameter sensitive to the shape of the Green’s function. Through numerous examples, we confirmed that our algorithm can be utilized in a systematically improvable, controlled, and black-box manner and highly accurate one- and two-body energies and one-particle density matrices can be obtained using only around 5% of the original grid points. Additionally, we established that to improve accuracy by an order of magnitude, the number of grid points needs to be doubled, whereas for the Matsubara frequency grid, an order of magnitude more grid points must be used. This suggests that realistic calculations with large basis sets that were previously out of reach because they required enormous grid sizes may now become feasible. |
doi_str_mv | 10.1021/acs.jctc.6b00178 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825540371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1788225293</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-40b133ba49554de45fe1087afdcf6349314155b8c8021433e29b2e607af7500d3</originalsourceid><addsrcrecordid>eNqFkbtOHTEQhq0oERBCnwq5TMGe-LY3OnS4BAmERKBeeb2zidGuvXi8EnR5jVR5tzxJfDgnVCCqsUbf_894fkI-c7bgTPCv2uDizkSzKFrGeFm9Izs8V3VWF6J4__zm1Tb5iHjHmJRKyC2yLUqm6kKJHfLnpO-tseAivYFxgqDjHCA7hglct-qeBQD399dvpKezM9F6Ry8h_vQd0t4Heg16sBitod8fMcKIh_QWrftBl3O7ak6DdUDPXYQw-UE_6aOnR9MU_IMddQR6qSPOrQ76hVn4iXzo9YCwt6m75Pb05Gb5Lbu4OjtfHl1kWhZ1zBRruZStVnWeqw5U3gNnVan7zvSFVLXkiud5W5kqnU1JCaJuBRQsEWXOWCd3yZe1b9rrfgaMzWjRwDBoB37GhlciOTNZ8rfRsqqEyEUtE8rWqAkeMUDfTCF9Ojw2nDWrBJuUYLNKsNkkmCT7G_e5HaF7FvyPLAEHa-BJ6ufg0l1e9_sHnyCriA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788225293</pqid></control><display><type>article</type><title>Efficient Temperature-Dependent Green’s Function Methods for Realistic Systems: Using Cubic Spline Interpolation to Approximate Matsubara Green’s Functions</title><source>ACS Publications</source><creator>Kananenka, Alexei A ; Welden, Alicia Rae ; Lan, Tran Nguyen ; Gull, Emanuel ; Zgid, Dominika</creator><creatorcontrib>Kananenka, Alexei A ; Welden, Alicia Rae ; Lan, Tran Nguyen ; Gull, Emanuel ; Zgid, Dominika</creatorcontrib><description>The popular, stable, robust, and computationally inexpensive cubic spline interpolation algorithm is adopted and used for finite temperature Green’s function calculations of realistic systems. We demonstrate that with appropriate modifications the temperature dependence can be preserved while the Green’s function grid size can be reduced by about 2 orders of magnitude by replacing the standard Matsubara frequency grid with a sparser grid and a set of interpolation coefficients. We benchmarked the accuracy of our algorithm as a function of a single parameter sensitive to the shape of the Green’s function. Through numerous examples, we confirmed that our algorithm can be utilized in a systematically improvable, controlled, and black-box manner and highly accurate one- and two-body energies and one-particle density matrices can be obtained using only around 5% of the original grid points. Additionally, we established that to improve accuracy by an order of magnitude, the number of grid points needs to be doubled, whereas for the Matsubara frequency grid, an order of magnitude more grid points must be used. This suggests that realistic calculations with large basis sets that were previously out of reach because they required enormous grid sizes may now become feasible.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.6b00178</identifier><identifier>PMID: 27049642</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Accuracy ; Algorithms ; Approximation ; Computation ; Green's functions ; Interpolation ; Mathematical analysis ; Splines</subject><ispartof>Journal of chemical theory and computation, 2016-05, Vol.12 (5), p.2250-2259</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-40b133ba49554de45fe1087afdcf6349314155b8c8021433e29b2e607af7500d3</citedby><cites>FETCH-LOGICAL-a369t-40b133ba49554de45fe1087afdcf6349314155b8c8021433e29b2e607af7500d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.6b00178$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.6b00178$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27049642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kananenka, Alexei A</creatorcontrib><creatorcontrib>Welden, Alicia Rae</creatorcontrib><creatorcontrib>Lan, Tran Nguyen</creatorcontrib><creatorcontrib>Gull, Emanuel</creatorcontrib><creatorcontrib>Zgid, Dominika</creatorcontrib><title>Efficient Temperature-Dependent Green’s Function Methods for Realistic Systems: Using Cubic Spline Interpolation to Approximate Matsubara Green’s Functions</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>The popular, stable, robust, and computationally inexpensive cubic spline interpolation algorithm is adopted and used for finite temperature Green’s function calculations of realistic systems. We demonstrate that with appropriate modifications the temperature dependence can be preserved while the Green’s function grid size can be reduced by about 2 orders of magnitude by replacing the standard Matsubara frequency grid with a sparser grid and a set of interpolation coefficients. We benchmarked the accuracy of our algorithm as a function of a single parameter sensitive to the shape of the Green’s function. Through numerous examples, we confirmed that our algorithm can be utilized in a systematically improvable, controlled, and black-box manner and highly accurate one- and two-body energies and one-particle density matrices can be obtained using only around 5% of the original grid points. Additionally, we established that to improve accuracy by an order of magnitude, the number of grid points needs to be doubled, whereas for the Matsubara frequency grid, an order of magnitude more grid points must be used. This suggests that realistic calculations with large basis sets that were previously out of reach because they required enormous grid sizes may now become feasible.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computation</subject><subject>Green's functions</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Splines</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkbtOHTEQhq0oERBCnwq5TMGe-LY3OnS4BAmERKBeeb2zidGuvXi8EnR5jVR5tzxJfDgnVCCqsUbf_894fkI-c7bgTPCv2uDizkSzKFrGeFm9Izs8V3VWF6J4__zm1Tb5iHjHmJRKyC2yLUqm6kKJHfLnpO-tseAivYFxgqDjHCA7hglct-qeBQD399dvpKezM9F6Ry8h_vQd0t4Heg16sBitod8fMcKIh_QWrftBl3O7ak6DdUDPXYQw-UE_6aOnR9MU_IMddQR6qSPOrQ76hVn4iXzo9YCwt6m75Pb05Gb5Lbu4OjtfHl1kWhZ1zBRruZStVnWeqw5U3gNnVan7zvSFVLXkiud5W5kqnU1JCaJuBRQsEWXOWCd3yZe1b9rrfgaMzWjRwDBoB37GhlciOTNZ8rfRsqqEyEUtE8rWqAkeMUDfTCF9Ojw2nDWrBJuUYLNKsNkkmCT7G_e5HaF7FvyPLAEHa-BJ6ufg0l1e9_sHnyCriA</recordid><startdate>20160510</startdate><enddate>20160510</enddate><creator>Kananenka, Alexei A</creator><creator>Welden, Alicia Rae</creator><creator>Lan, Tran Nguyen</creator><creator>Gull, Emanuel</creator><creator>Zgid, Dominika</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160510</creationdate><title>Efficient Temperature-Dependent Green’s Function Methods for Realistic Systems: Using Cubic Spline Interpolation to Approximate Matsubara Green’s Functions</title><author>Kananenka, Alexei A ; Welden, Alicia Rae ; Lan, Tran Nguyen ; Gull, Emanuel ; Zgid, Dominika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-40b133ba49554de45fe1087afdcf6349314155b8c8021433e29b2e607af7500d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computation</topic><topic>Green's functions</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Splines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kananenka, Alexei A</creatorcontrib><creatorcontrib>Welden, Alicia Rae</creatorcontrib><creatorcontrib>Lan, Tran Nguyen</creatorcontrib><creatorcontrib>Gull, Emanuel</creatorcontrib><creatorcontrib>Zgid, Dominika</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kananenka, Alexei A</au><au>Welden, Alicia Rae</au><au>Lan, Tran Nguyen</au><au>Gull, Emanuel</au><au>Zgid, Dominika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Temperature-Dependent Green’s Function Methods for Realistic Systems: Using Cubic Spline Interpolation to Approximate Matsubara Green’s Functions</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2016-05-10</date><risdate>2016</risdate><volume>12</volume><issue>5</issue><spage>2250</spage><epage>2259</epage><pages>2250-2259</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>The popular, stable, robust, and computationally inexpensive cubic spline interpolation algorithm is adopted and used for finite temperature Green’s function calculations of realistic systems. We demonstrate that with appropriate modifications the temperature dependence can be preserved while the Green’s function grid size can be reduced by about 2 orders of magnitude by replacing the standard Matsubara frequency grid with a sparser grid and a set of interpolation coefficients. We benchmarked the accuracy of our algorithm as a function of a single parameter sensitive to the shape of the Green’s function. Through numerous examples, we confirmed that our algorithm can be utilized in a systematically improvable, controlled, and black-box manner and highly accurate one- and two-body energies and one-particle density matrices can be obtained using only around 5% of the original grid points. Additionally, we established that to improve accuracy by an order of magnitude, the number of grid points needs to be doubled, whereas for the Matsubara frequency grid, an order of magnitude more grid points must be used. This suggests that realistic calculations with large basis sets that were previously out of reach because they required enormous grid sizes may now become feasible.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27049642</pmid><doi>10.1021/acs.jctc.6b00178</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2016-05, Vol.12 (5), p.2250-2259 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825540371 |
source | ACS Publications |
subjects | Accuracy Algorithms Approximation Computation Green's functions Interpolation Mathematical analysis Splines |
title | Efficient Temperature-Dependent Green’s Function Methods for Realistic Systems: Using Cubic Spline Interpolation to Approximate Matsubara Green’s Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T03%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Temperature-Dependent%20Green%E2%80%99s%20Function%20Methods%20for%20Realistic%20Systems:%20Using%20Cubic%20Spline%20Interpolation%20to%20Approximate%20Matsubara%20Green%E2%80%99s%20Functions&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Kananenka,%20Alexei%20A&rft.date=2016-05-10&rft.volume=12&rft.issue=5&rft.spage=2250&rft.epage=2259&rft.pages=2250-2259&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.6b00178&rft_dat=%3Cproquest_cross%3E1788225293%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1788225293&rft_id=info:pmid/27049642&rfr_iscdi=true |