Efficient Temperature-Dependent Green’s Function Methods for Realistic Systems: Using Cubic Spline Interpolation to Approximate Matsubara Green’s Functions

The popular, stable, robust, and computationally inexpensive cubic spline interpolation algorithm is adopted and used for finite temperature Green’s function calculations of realistic systems. We demonstrate that with appropriate modifications the temperature dependence can be preserved while the Gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2016-05, Vol.12 (5), p.2250-2259
Hauptverfasser: Kananenka, Alexei A, Welden, Alicia Rae, Lan, Tran Nguyen, Gull, Emanuel, Zgid, Dominika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2259
container_issue 5
container_start_page 2250
container_title Journal of chemical theory and computation
container_volume 12
creator Kananenka, Alexei A
Welden, Alicia Rae
Lan, Tran Nguyen
Gull, Emanuel
Zgid, Dominika
description The popular, stable, robust, and computationally inexpensive cubic spline interpolation algorithm is adopted and used for finite temperature Green’s function calculations of realistic systems. We demonstrate that with appropriate modifications the temperature dependence can be preserved while the Green’s function grid size can be reduced by about 2 orders of magnitude by replacing the standard Matsubara frequency grid with a sparser grid and a set of interpolation coefficients. We benchmarked the accuracy of our algorithm as a function of a single parameter sensitive to the shape of the Green’s function. Through numerous examples, we confirmed that our algorithm can be utilized in a systematically improvable, controlled, and black-box manner and highly accurate one- and two-body energies and one-particle density matrices can be obtained using only around 5% of the original grid points. Additionally, we established that to improve accuracy by an order of magnitude, the number of grid points needs to be doubled, whereas for the Matsubara frequency grid, an order of magnitude more grid points must be used. This suggests that realistic calculations with large basis sets that were previously out of reach because they required enormous grid sizes may now become feasible.
doi_str_mv 10.1021/acs.jctc.6b00178
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825540371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1788225293</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-40b133ba49554de45fe1087afdcf6349314155b8c8021433e29b2e607af7500d3</originalsourceid><addsrcrecordid>eNqFkbtOHTEQhq0oERBCnwq5TMGe-LY3OnS4BAmERKBeeb2zidGuvXi8EnR5jVR5tzxJfDgnVCCqsUbf_894fkI-c7bgTPCv2uDizkSzKFrGeFm9Izs8V3VWF6J4__zm1Tb5iHjHmJRKyC2yLUqm6kKJHfLnpO-tseAivYFxgqDjHCA7hglct-qeBQD399dvpKezM9F6Ry8h_vQd0t4Heg16sBitod8fMcKIh_QWrftBl3O7ak6DdUDPXYQw-UE_6aOnR9MU_IMddQR6qSPOrQ76hVn4iXzo9YCwt6m75Pb05Gb5Lbu4OjtfHl1kWhZ1zBRruZStVnWeqw5U3gNnVan7zvSFVLXkiud5W5kqnU1JCaJuBRQsEWXOWCd3yZe1b9rrfgaMzWjRwDBoB37GhlciOTNZ8rfRsqqEyEUtE8rWqAkeMUDfTCF9Ojw2nDWrBJuUYLNKsNkkmCT7G_e5HaF7FvyPLAEHa-BJ6ufg0l1e9_sHnyCriA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788225293</pqid></control><display><type>article</type><title>Efficient Temperature-Dependent Green’s Function Methods for Realistic Systems: Using Cubic Spline Interpolation to Approximate Matsubara Green’s Functions</title><source>ACS Publications</source><creator>Kananenka, Alexei A ; Welden, Alicia Rae ; Lan, Tran Nguyen ; Gull, Emanuel ; Zgid, Dominika</creator><creatorcontrib>Kananenka, Alexei A ; Welden, Alicia Rae ; Lan, Tran Nguyen ; Gull, Emanuel ; Zgid, Dominika</creatorcontrib><description>The popular, stable, robust, and computationally inexpensive cubic spline interpolation algorithm is adopted and used for finite temperature Green’s function calculations of realistic systems. We demonstrate that with appropriate modifications the temperature dependence can be preserved while the Green’s function grid size can be reduced by about 2 orders of magnitude by replacing the standard Matsubara frequency grid with a sparser grid and a set of interpolation coefficients. We benchmarked the accuracy of our algorithm as a function of a single parameter sensitive to the shape of the Green’s function. Through numerous examples, we confirmed that our algorithm can be utilized in a systematically improvable, controlled, and black-box manner and highly accurate one- and two-body energies and one-particle density matrices can be obtained using only around 5% of the original grid points. Additionally, we established that to improve accuracy by an order of magnitude, the number of grid points needs to be doubled, whereas for the Matsubara frequency grid, an order of magnitude more grid points must be used. This suggests that realistic calculations with large basis sets that were previously out of reach because they required enormous grid sizes may now become feasible.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.6b00178</identifier><identifier>PMID: 27049642</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Accuracy ; Algorithms ; Approximation ; Computation ; Green's functions ; Interpolation ; Mathematical analysis ; Splines</subject><ispartof>Journal of chemical theory and computation, 2016-05, Vol.12 (5), p.2250-2259</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-40b133ba49554de45fe1087afdcf6349314155b8c8021433e29b2e607af7500d3</citedby><cites>FETCH-LOGICAL-a369t-40b133ba49554de45fe1087afdcf6349314155b8c8021433e29b2e607af7500d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.6b00178$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.6b00178$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27049642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kananenka, Alexei A</creatorcontrib><creatorcontrib>Welden, Alicia Rae</creatorcontrib><creatorcontrib>Lan, Tran Nguyen</creatorcontrib><creatorcontrib>Gull, Emanuel</creatorcontrib><creatorcontrib>Zgid, Dominika</creatorcontrib><title>Efficient Temperature-Dependent Green’s Function Methods for Realistic Systems: Using Cubic Spline Interpolation to Approximate Matsubara Green’s Functions</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>The popular, stable, robust, and computationally inexpensive cubic spline interpolation algorithm is adopted and used for finite temperature Green’s function calculations of realistic systems. We demonstrate that with appropriate modifications the temperature dependence can be preserved while the Green’s function grid size can be reduced by about 2 orders of magnitude by replacing the standard Matsubara frequency grid with a sparser grid and a set of interpolation coefficients. We benchmarked the accuracy of our algorithm as a function of a single parameter sensitive to the shape of the Green’s function. Through numerous examples, we confirmed that our algorithm can be utilized in a systematically improvable, controlled, and black-box manner and highly accurate one- and two-body energies and one-particle density matrices can be obtained using only around 5% of the original grid points. Additionally, we established that to improve accuracy by an order of magnitude, the number of grid points needs to be doubled, whereas for the Matsubara frequency grid, an order of magnitude more grid points must be used. This suggests that realistic calculations with large basis sets that were previously out of reach because they required enormous grid sizes may now become feasible.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computation</subject><subject>Green's functions</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Splines</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkbtOHTEQhq0oERBCnwq5TMGe-LY3OnS4BAmERKBeeb2zidGuvXi8EnR5jVR5tzxJfDgnVCCqsUbf_894fkI-c7bgTPCv2uDizkSzKFrGeFm9Izs8V3VWF6J4__zm1Tb5iHjHmJRKyC2yLUqm6kKJHfLnpO-tseAivYFxgqDjHCA7hglct-qeBQD399dvpKezM9F6Ry8h_vQd0t4Heg16sBitod8fMcKIh_QWrftBl3O7ak6DdUDPXYQw-UE_6aOnR9MU_IMddQR6qSPOrQ76hVn4iXzo9YCwt6m75Pb05Gb5Lbu4OjtfHl1kWhZ1zBRruZStVnWeqw5U3gNnVan7zvSFVLXkiud5W5kqnU1JCaJuBRQsEWXOWCd3yZe1b9rrfgaMzWjRwDBoB37GhlciOTNZ8rfRsqqEyEUtE8rWqAkeMUDfTCF9Ojw2nDWrBJuUYLNKsNkkmCT7G_e5HaF7FvyPLAEHa-BJ6ufg0l1e9_sHnyCriA</recordid><startdate>20160510</startdate><enddate>20160510</enddate><creator>Kananenka, Alexei A</creator><creator>Welden, Alicia Rae</creator><creator>Lan, Tran Nguyen</creator><creator>Gull, Emanuel</creator><creator>Zgid, Dominika</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160510</creationdate><title>Efficient Temperature-Dependent Green’s Function Methods for Realistic Systems: Using Cubic Spline Interpolation to Approximate Matsubara Green’s Functions</title><author>Kananenka, Alexei A ; Welden, Alicia Rae ; Lan, Tran Nguyen ; Gull, Emanuel ; Zgid, Dominika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-40b133ba49554de45fe1087afdcf6349314155b8c8021433e29b2e607af7500d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computation</topic><topic>Green's functions</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Splines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kananenka, Alexei A</creatorcontrib><creatorcontrib>Welden, Alicia Rae</creatorcontrib><creatorcontrib>Lan, Tran Nguyen</creatorcontrib><creatorcontrib>Gull, Emanuel</creatorcontrib><creatorcontrib>Zgid, Dominika</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kananenka, Alexei A</au><au>Welden, Alicia Rae</au><au>Lan, Tran Nguyen</au><au>Gull, Emanuel</au><au>Zgid, Dominika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Temperature-Dependent Green’s Function Methods for Realistic Systems: Using Cubic Spline Interpolation to Approximate Matsubara Green’s Functions</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2016-05-10</date><risdate>2016</risdate><volume>12</volume><issue>5</issue><spage>2250</spage><epage>2259</epage><pages>2250-2259</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>The popular, stable, robust, and computationally inexpensive cubic spline interpolation algorithm is adopted and used for finite temperature Green’s function calculations of realistic systems. We demonstrate that with appropriate modifications the temperature dependence can be preserved while the Green’s function grid size can be reduced by about 2 orders of magnitude by replacing the standard Matsubara frequency grid with a sparser grid and a set of interpolation coefficients. We benchmarked the accuracy of our algorithm as a function of a single parameter sensitive to the shape of the Green’s function. Through numerous examples, we confirmed that our algorithm can be utilized in a systematically improvable, controlled, and black-box manner and highly accurate one- and two-body energies and one-particle density matrices can be obtained using only around 5% of the original grid points. Additionally, we established that to improve accuracy by an order of magnitude, the number of grid points needs to be doubled, whereas for the Matsubara frequency grid, an order of magnitude more grid points must be used. This suggests that realistic calculations with large basis sets that were previously out of reach because they required enormous grid sizes may now become feasible.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27049642</pmid><doi>10.1021/acs.jctc.6b00178</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2016-05, Vol.12 (5), p.2250-2259
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_1825540371
source ACS Publications
subjects Accuracy
Algorithms
Approximation
Computation
Green's functions
Interpolation
Mathematical analysis
Splines
title Efficient Temperature-Dependent Green’s Function Methods for Realistic Systems: Using Cubic Spline Interpolation to Approximate Matsubara Green’s Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T03%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Temperature-Dependent%20Green%E2%80%99s%20Function%20Methods%20for%20Realistic%20Systems:%20Using%20Cubic%20Spline%20Interpolation%20to%20Approximate%20Matsubara%20Green%E2%80%99s%20Functions&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Kananenka,%20Alexei%20A&rft.date=2016-05-10&rft.volume=12&rft.issue=5&rft.spage=2250&rft.epage=2259&rft.pages=2250-2259&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.6b00178&rft_dat=%3Cproquest_cross%3E1788225293%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1788225293&rft_id=info:pmid/27049642&rfr_iscdi=true