Micromechanics models of particulate filled elastomer at finite strain deformation

A micromechanics-based model is proposed for the finite strain deformation of filled elastomers based on generalized Eshelby’s tensor and Mori–Tanaka’s method. The present formulation leads to a clear explanation of the constraint effect of rubber–like matrix on the inclusions. Comparisons with expe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part B, Engineering Engineering, 2013-02, Vol.45 (1), p.881-887
Hauptverfasser: Yang, Hui, Jiang, Yunpeng, Chen, Puhui, Fan, Hualin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 887
container_issue 1
container_start_page 881
container_title Composites. Part B, Engineering
container_volume 45
creator Yang, Hui
Jiang, Yunpeng
Chen, Puhui
Fan, Hualin
description A micromechanics-based model is proposed for the finite strain deformation of filled elastomers based on generalized Eshelby’s tensor and Mori–Tanaka’s method. The present formulation leads to a clear explanation of the constraint effect of rubber–like matrix on the inclusions. Comparisons with experiments and other micromechanics models are conducted. It is observed that an improvement in predictive capability for the composite with randomly dispersed particles was achieved by the present method. Based on the latest experiment of single molecular chain, a compact network model is fatherly developed to reflect the microstructure effect on the stress–strain relations of rubbery polymer and the resulting composites.
doi_str_mv 10.1016/j.compositesb.2012.07.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825539578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359836812004428</els_id><sourcerecordid>1825539578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-2fd988b322e123e20b24d7cabc4b98ef649c8679c4e8b909d2047e3c2d7393d03</originalsourceid><addsrcrecordid>eNqNkE1r3DAQhk1ooWmS31D3UOjFjj5sSzqWpR-BhEA-zkIejVItsrWVtIX8-2rZEHrMSYN45p2Zp2k-U9JTQqfLbQ9x2cXsC-a5Z4SynoieUHrSnFIpVEfJpN7Vmo-qk3ySH5qPOW8JIcPI2Wlzd-MhxQXht1k95HaJFkNuo2t3JhUP-2AKts6HgLbFYHKpcGpNqX9rHdrmkoxfW4supsUUH9fz5r0zIePFy3vWPP74_rD51V3f_rzafLvuYBho6ZizSsqZM4aUcWRkZoMVYGYYZiXRTYMCOQkFA8pZEWUZGQRyYFZwxS3hZ83XY-4uxT97zEUvPgOGYFaM-6ypZOPI1ShkRdURrbfmnNDpXfKLSc-aEn3wqLf6P4_64FEToavH2vvlZYzJYIJLZgWfXwPYJOqWlFfu05FzJmrzlCrzeF-DRlJTRi4PxOZIVMP412PSGTyugNYnhKJt9G_Y5x8rBJle</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825539578</pqid></control><display><type>article</type><title>Micromechanics models of particulate filled elastomer at finite strain deformation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yang, Hui ; Jiang, Yunpeng ; Chen, Puhui ; Fan, Hualin</creator><creatorcontrib>Yang, Hui ; Jiang, Yunpeng ; Chen, Puhui ; Fan, Hualin</creatorcontrib><description>A micromechanics-based model is proposed for the finite strain deformation of filled elastomers based on generalized Eshelby’s tensor and Mori–Tanaka’s method. The present formulation leads to a clear explanation of the constraint effect of rubber–like matrix on the inclusions. Comparisons with experiments and other micromechanics models are conducted. It is observed that an improvement in predictive capability for the composite with randomly dispersed particles was achieved by the present method. Based on the latest experiment of single molecular chain, a compact network model is fatherly developed to reflect the microstructure effect on the stress–strain relations of rubbery polymer and the resulting composites.</description><identifier>ISSN: 1359-8368</identifier><identifier>EISSN: 1879-1069</identifier><identifier>DOI: 10.1016/j.compositesb.2012.07.011</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Polymer–matrix composites (PMCs) ; Applied sciences ; B. Microstructures ; C. Analytical modeling ; C. Micro-mechanics ; Composites ; Deformation ; Elastomers ; Exact sciences and technology ; Forms of application and semi-finished materials ; Laminates ; Mathematical analysis ; Mathematical models ; Micromechanics ; microstructure ; Particulate composites ; Physicochemistry of polymers ; Polymer industry, paints, wood ; polymers ; Strain ; Stress-strain relationships ; Technology of polymers</subject><ispartof>Composites. Part B, Engineering, 2013-02, Vol.45 (1), p.881-887</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-2fd988b322e123e20b24d7cabc4b98ef649c8679c4e8b909d2047e3c2d7393d03</citedby><cites>FETCH-LOGICAL-c441t-2fd988b322e123e20b24d7cabc4b98ef649c8679c4e8b909d2047e3c2d7393d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359836812004428$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26786713$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Jiang, Yunpeng</creatorcontrib><creatorcontrib>Chen, Puhui</creatorcontrib><creatorcontrib>Fan, Hualin</creatorcontrib><title>Micromechanics models of particulate filled elastomer at finite strain deformation</title><title>Composites. Part B, Engineering</title><description>A micromechanics-based model is proposed for the finite strain deformation of filled elastomers based on generalized Eshelby’s tensor and Mori–Tanaka’s method. The present formulation leads to a clear explanation of the constraint effect of rubber–like matrix on the inclusions. Comparisons with experiments and other micromechanics models are conducted. It is observed that an improvement in predictive capability for the composite with randomly dispersed particles was achieved by the present method. Based on the latest experiment of single molecular chain, a compact network model is fatherly developed to reflect the microstructure effect on the stress–strain relations of rubbery polymer and the resulting composites.</description><subject>A. Polymer–matrix composites (PMCs)</subject><subject>Applied sciences</subject><subject>B. Microstructures</subject><subject>C. Analytical modeling</subject><subject>C. Micro-mechanics</subject><subject>Composites</subject><subject>Deformation</subject><subject>Elastomers</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Laminates</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Micromechanics</subject><subject>microstructure</subject><subject>Particulate composites</subject><subject>Physicochemistry of polymers</subject><subject>Polymer industry, paints, wood</subject><subject>polymers</subject><subject>Strain</subject><subject>Stress-strain relationships</subject><subject>Technology of polymers</subject><issn>1359-8368</issn><issn>1879-1069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkE1r3DAQhk1ooWmS31D3UOjFjj5sSzqWpR-BhEA-zkIejVItsrWVtIX8-2rZEHrMSYN45p2Zp2k-U9JTQqfLbQ9x2cXsC-a5Z4SynoieUHrSnFIpVEfJpN7Vmo-qk3ySH5qPOW8JIcPI2Wlzd-MhxQXht1k95HaJFkNuo2t3JhUP-2AKts6HgLbFYHKpcGpNqX9rHdrmkoxfW4supsUUH9fz5r0zIePFy3vWPP74_rD51V3f_rzafLvuYBho6ZizSsqZM4aUcWRkZoMVYGYYZiXRTYMCOQkFA8pZEWUZGQRyYFZwxS3hZ83XY-4uxT97zEUvPgOGYFaM-6ypZOPI1ShkRdURrbfmnNDpXfKLSc-aEn3wqLf6P4_64FEToavH2vvlZYzJYIJLZgWfXwPYJOqWlFfu05FzJmrzlCrzeF-DRlJTRi4PxOZIVMP412PSGTyugNYnhKJt9G_Y5x8rBJle</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Yang, Hui</creator><creator>Jiang, Yunpeng</creator><creator>Chen, Puhui</creator><creator>Fan, Hualin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20130201</creationdate><title>Micromechanics models of particulate filled elastomer at finite strain deformation</title><author>Yang, Hui ; Jiang, Yunpeng ; Chen, Puhui ; Fan, Hualin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-2fd988b322e123e20b24d7cabc4b98ef649c8679c4e8b909d2047e3c2d7393d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>A. Polymer–matrix composites (PMCs)</topic><topic>Applied sciences</topic><topic>B. Microstructures</topic><topic>C. Analytical modeling</topic><topic>C. Micro-mechanics</topic><topic>Composites</topic><topic>Deformation</topic><topic>Elastomers</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Laminates</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Micromechanics</topic><topic>microstructure</topic><topic>Particulate composites</topic><topic>Physicochemistry of polymers</topic><topic>Polymer industry, paints, wood</topic><topic>polymers</topic><topic>Strain</topic><topic>Stress-strain relationships</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Jiang, Yunpeng</creatorcontrib><creatorcontrib>Chen, Puhui</creatorcontrib><creatorcontrib>Fan, Hualin</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Composites. Part B, Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Hui</au><au>Jiang, Yunpeng</au><au>Chen, Puhui</au><au>Fan, Hualin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanics models of particulate filled elastomer at finite strain deformation</atitle><jtitle>Composites. Part B, Engineering</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>45</volume><issue>1</issue><spage>881</spage><epage>887</epage><pages>881-887</pages><issn>1359-8368</issn><eissn>1879-1069</eissn><abstract>A micromechanics-based model is proposed for the finite strain deformation of filled elastomers based on generalized Eshelby’s tensor and Mori–Tanaka’s method. The present formulation leads to a clear explanation of the constraint effect of rubber–like matrix on the inclusions. Comparisons with experiments and other micromechanics models are conducted. It is observed that an improvement in predictive capability for the composite with randomly dispersed particles was achieved by the present method. Based on the latest experiment of single molecular chain, a compact network model is fatherly developed to reflect the microstructure effect on the stress–strain relations of rubbery polymer and the resulting composites.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesb.2012.07.011</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-8368
ispartof Composites. Part B, Engineering, 2013-02, Vol.45 (1), p.881-887
issn 1359-8368
1879-1069
language eng
recordid cdi_proquest_miscellaneous_1825539578
source Elsevier ScienceDirect Journals Complete
subjects A. Polymer–matrix composites (PMCs)
Applied sciences
B. Microstructures
C. Analytical modeling
C. Micro-mechanics
Composites
Deformation
Elastomers
Exact sciences and technology
Forms of application and semi-finished materials
Laminates
Mathematical analysis
Mathematical models
Micromechanics
microstructure
Particulate composites
Physicochemistry of polymers
Polymer industry, paints, wood
polymers
Strain
Stress-strain relationships
Technology of polymers
title Micromechanics models of particulate filled elastomer at finite strain deformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanics%20models%20of%20particulate%20filled%20elastomer%20at%20finite%20strain%20deformation&rft.jtitle=Composites.%20Part%20B,%20Engineering&rft.au=Yang,%20Hui&rft.date=2013-02-01&rft.volume=45&rft.issue=1&rft.spage=881&rft.epage=887&rft.pages=881-887&rft.issn=1359-8368&rft.eissn=1879-1069&rft_id=info:doi/10.1016/j.compositesb.2012.07.011&rft_dat=%3Cproquest_cross%3E1825539578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825539578&rft_id=info:pmid/&rft_els_id=S1359836812004428&rfr_iscdi=true