Hierarchical Stochastic Neighbor Embedding

In recent years, dimensionality‐reduction techniques have been developed and are widely used for hypothesis generation in Exploratory Data Analysis. However, these techniques are confronted with overcoming the trade‐off between computation time and the quality of the provided dimensionality reductio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2016-06, Vol.35 (3), p.21-30
Hauptverfasser: Pezzotti, N., Höllt, T., Lelieveldt, B., Eisemann, E., Vilanova, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue 3
container_start_page 21
container_title Computer graphics forum
container_volume 35
creator Pezzotti, N.
Höllt, T.
Lelieveldt, B.
Eisemann, E.
Vilanova, A.
description In recent years, dimensionality‐reduction techniques have been developed and are widely used for hypothesis generation in Exploratory Data Analysis. However, these techniques are confronted with overcoming the trade‐off between computation time and the quality of the provided dimensionality reduction. In this work, we address this limitation, by introducing Hierarchical Stochastic Neighbor Embedding (Hierarchical‐SNE). Using a hierarchical representation of the data, we incorporate the well‐known mantra of Overview‐First, Details‐On‐Demand in non‐linear dimensionality reduction. First, the analysis shows an embedding, that reveals only the dominant structures in the data (Overview). Then, by selecting structures that are visible in the overview, the user can filter the data and drill down in the hierarchy. While the user descends into the hierarchy, detailed visualizations of the high‐dimensional structures will lead to new insights. In this paper, we explain how Hierarchical‐SNE scales to the analysis of big datasets. In addition, we show its application potential in the visualization of Deep‐Learning architectures and the analysis of hyperspectral images.
doi_str_mv 10.1111/cgf.12878
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825539170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825539170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4348-95d522fcbee0ead717a2605f4254a82834ced90adeb25e97e9fa6a42e8d0c9473</originalsourceid><addsrcrecordid>eNp10EFLwzAUB_AgCs7pwW8w8KJCZ5ImTXOUsa3inIKK3kKavm6Z3TqTDt23N1r1IJjLy-H3fzz-CB0T3CfhXZhZ2Sc0FekO6hCWiChNuNxFHUzCX2DO99GB9wuMMRMJ76DzzILTzsyt0VXvvqnNXPvGmt4U7Gye1643XOZQFHY1O0R7pa48HH3PLnocDR8GWTS5HV8NLieRYTFLI8kLTmlpcgAMuhBEaJpgXjLKmU5pGjMDhcS6gJxykAJkqRPNKKQFNpKJuItO271rV79uwDdqab2BqtIrqDdekZRyHksicKAnf-ii3rhVuC4oTJiQBMugzlplXO29g1KtnV1qt1UEq8_WVGhNfbUW7EVr32wF2_-hGoxHP4moTVjfwPtvQrsXlYhYcPU0Hatnml3fDLKRuos_ALiwe4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1801479109</pqid></control><display><type>article</type><title>Hierarchical Stochastic Neighbor Embedding</title><source>Business Source Complete</source><source>Wiley Online Library All Journals</source><creator>Pezzotti, N. ; Höllt, T. ; Lelieveldt, B. ; Eisemann, E. ; Vilanova, A.</creator><creatorcontrib>Pezzotti, N. ; Höllt, T. ; Lelieveldt, B. ; Eisemann, E. ; Vilanova, A.</creatorcontrib><description>In recent years, dimensionality‐reduction techniques have been developed and are widely used for hypothesis generation in Exploratory Data Analysis. However, these techniques are confronted with overcoming the trade‐off between computation time and the quality of the provided dimensionality reduction. In this work, we address this limitation, by introducing Hierarchical Stochastic Neighbor Embedding (Hierarchical‐SNE). Using a hierarchical representation of the data, we incorporate the well‐known mantra of Overview‐First, Details‐On‐Demand in non‐linear dimensionality reduction. First, the analysis shows an embedding, that reveals only the dominant structures in the data (Overview). Then, by selecting structures that are visible in the overview, the user can filter the data and drill down in the hierarchy. While the user descends into the hierarchy, detailed visualizations of the high‐dimensional structures will lead to new insights. In this paper, we explain how Hierarchical‐SNE scales to the analysis of big datasets. In addition, we show its application potential in the visualization of Deep‐Learning architectures and the analysis of hyperspectral images.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.12878</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Categories and Subject Descriptors (according to ACM CCS) ; Computer graphics ; Data analysis ; Data processing ; Hierarchies ; I.3.0 [Computer Graphics]: General ; Nonlinearity ; Reduction ; Representations ; Stochastic models ; Stochasticity ; Studies ; Tradeoffs ; Visualization</subject><ispartof>Computer graphics forum, 2016-06, Vol.35 (3), p.21-30</ispartof><rights>2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley &amp; Sons Ltd. Published by John Wiley &amp; Sons Ltd.</rights><rights>2016 The Eurographics Association and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4348-95d522fcbee0ead717a2605f4254a82834ced90adeb25e97e9fa6a42e8d0c9473</citedby><cites>FETCH-LOGICAL-c4348-95d522fcbee0ead717a2605f4254a82834ced90adeb25e97e9fa6a42e8d0c9473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.12878$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.12878$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Pezzotti, N.</creatorcontrib><creatorcontrib>Höllt, T.</creatorcontrib><creatorcontrib>Lelieveldt, B.</creatorcontrib><creatorcontrib>Eisemann, E.</creatorcontrib><creatorcontrib>Vilanova, A.</creatorcontrib><title>Hierarchical Stochastic Neighbor Embedding</title><title>Computer graphics forum</title><addtitle>Computer Graphics Forum</addtitle><description>In recent years, dimensionality‐reduction techniques have been developed and are widely used for hypothesis generation in Exploratory Data Analysis. However, these techniques are confronted with overcoming the trade‐off between computation time and the quality of the provided dimensionality reduction. In this work, we address this limitation, by introducing Hierarchical Stochastic Neighbor Embedding (Hierarchical‐SNE). Using a hierarchical representation of the data, we incorporate the well‐known mantra of Overview‐First, Details‐On‐Demand in non‐linear dimensionality reduction. First, the analysis shows an embedding, that reveals only the dominant structures in the data (Overview). Then, by selecting structures that are visible in the overview, the user can filter the data and drill down in the hierarchy. While the user descends into the hierarchy, detailed visualizations of the high‐dimensional structures will lead to new insights. In this paper, we explain how Hierarchical‐SNE scales to the analysis of big datasets. In addition, we show its application potential in the visualization of Deep‐Learning architectures and the analysis of hyperspectral images.</description><subject>Categories and Subject Descriptors (according to ACM CCS)</subject><subject>Computer graphics</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Hierarchies</subject><subject>I.3.0 [Computer Graphics]: General</subject><subject>Nonlinearity</subject><subject>Reduction</subject><subject>Representations</subject><subject>Stochastic models</subject><subject>Stochasticity</subject><subject>Studies</subject><subject>Tradeoffs</subject><subject>Visualization</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10EFLwzAUB_AgCs7pwW8w8KJCZ5ImTXOUsa3inIKK3kKavm6Z3TqTDt23N1r1IJjLy-H3fzz-CB0T3CfhXZhZ2Sc0FekO6hCWiChNuNxFHUzCX2DO99GB9wuMMRMJ76DzzILTzsyt0VXvvqnNXPvGmt4U7Gye1643XOZQFHY1O0R7pa48HH3PLnocDR8GWTS5HV8NLieRYTFLI8kLTmlpcgAMuhBEaJpgXjLKmU5pGjMDhcS6gJxykAJkqRPNKKQFNpKJuItO271rV79uwDdqab2BqtIrqDdekZRyHksicKAnf-ii3rhVuC4oTJiQBMugzlplXO29g1KtnV1qt1UEq8_WVGhNfbUW7EVr32wF2_-hGoxHP4moTVjfwPtvQrsXlYhYcPU0Hatnml3fDLKRuos_ALiwe4I</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Pezzotti, N.</creator><creator>Höllt, T.</creator><creator>Lelieveldt, B.</creator><creator>Eisemann, E.</creator><creator>Vilanova, A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201606</creationdate><title>Hierarchical Stochastic Neighbor Embedding</title><author>Pezzotti, N. ; Höllt, T. ; Lelieveldt, B. ; Eisemann, E. ; Vilanova, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4348-95d522fcbee0ead717a2605f4254a82834ced90adeb25e97e9fa6a42e8d0c9473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Categories and Subject Descriptors (according to ACM CCS)</topic><topic>Computer graphics</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Hierarchies</topic><topic>I.3.0 [Computer Graphics]: General</topic><topic>Nonlinearity</topic><topic>Reduction</topic><topic>Representations</topic><topic>Stochastic models</topic><topic>Stochasticity</topic><topic>Studies</topic><topic>Tradeoffs</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pezzotti, N.</creatorcontrib><creatorcontrib>Höllt, T.</creatorcontrib><creatorcontrib>Lelieveldt, B.</creatorcontrib><creatorcontrib>Eisemann, E.</creatorcontrib><creatorcontrib>Vilanova, A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pezzotti, N.</au><au>Höllt, T.</au><au>Lelieveldt, B.</au><au>Eisemann, E.</au><au>Vilanova, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Stochastic Neighbor Embedding</atitle><jtitle>Computer graphics forum</jtitle><addtitle>Computer Graphics Forum</addtitle><date>2016-06</date><risdate>2016</risdate><volume>35</volume><issue>3</issue><spage>21</spage><epage>30</epage><pages>21-30</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>In recent years, dimensionality‐reduction techniques have been developed and are widely used for hypothesis generation in Exploratory Data Analysis. However, these techniques are confronted with overcoming the trade‐off between computation time and the quality of the provided dimensionality reduction. In this work, we address this limitation, by introducing Hierarchical Stochastic Neighbor Embedding (Hierarchical‐SNE). Using a hierarchical representation of the data, we incorporate the well‐known mantra of Overview‐First, Details‐On‐Demand in non‐linear dimensionality reduction. First, the analysis shows an embedding, that reveals only the dominant structures in the data (Overview). Then, by selecting structures that are visible in the overview, the user can filter the data and drill down in the hierarchy. While the user descends into the hierarchy, detailed visualizations of the high‐dimensional structures will lead to new insights. In this paper, we explain how Hierarchical‐SNE scales to the analysis of big datasets. In addition, we show its application potential in the visualization of Deep‐Learning architectures and the analysis of hyperspectral images.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.12878</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2016-06, Vol.35 (3), p.21-30
issn 0167-7055
1467-8659
language eng
recordid cdi_proquest_miscellaneous_1825539170
source Business Source Complete; Wiley Online Library All Journals
subjects Categories and Subject Descriptors (according to ACM CCS)
Computer graphics
Data analysis
Data processing
Hierarchies
I.3.0 [Computer Graphics]: General
Nonlinearity
Reduction
Representations
Stochastic models
Stochasticity
Studies
Tradeoffs
Visualization
title Hierarchical Stochastic Neighbor Embedding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Stochastic%20Neighbor%20Embedding&rft.jtitle=Computer%20graphics%20forum&rft.au=Pezzotti,%20N.&rft.date=2016-06&rft.volume=35&rft.issue=3&rft.spage=21&rft.epage=30&rft.pages=21-30&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.12878&rft_dat=%3Cproquest_cross%3E1825539170%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1801479109&rft_id=info:pmid/&rfr_iscdi=true