Hierarchical Stochastic Neighbor Embedding
In recent years, dimensionality‐reduction techniques have been developed and are widely used for hypothesis generation in Exploratory Data Analysis. However, these techniques are confronted with overcoming the trade‐off between computation time and the quality of the provided dimensionality reductio...
Gespeichert in:
Veröffentlicht in: | Computer graphics forum 2016-06, Vol.35 (3), p.21-30 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | 3 |
container_start_page | 21 |
container_title | Computer graphics forum |
container_volume | 35 |
creator | Pezzotti, N. Höllt, T. Lelieveldt, B. Eisemann, E. Vilanova, A. |
description | In recent years, dimensionality‐reduction techniques have been developed and are widely used for hypothesis generation in Exploratory Data Analysis. However, these techniques are confronted with overcoming the trade‐off between computation time and the quality of the provided dimensionality reduction. In this work, we address this limitation, by introducing Hierarchical Stochastic Neighbor Embedding (Hierarchical‐SNE). Using a hierarchical representation of the data, we incorporate the well‐known mantra of Overview‐First, Details‐On‐Demand in non‐linear dimensionality reduction. First, the analysis shows an embedding, that reveals only the dominant structures in the data (Overview). Then, by selecting structures that are visible in the overview, the user can filter the data and drill down in the hierarchy. While the user descends into the hierarchy, detailed visualizations of the high‐dimensional structures will lead to new insights. In this paper, we explain how Hierarchical‐SNE scales to the analysis of big datasets. In addition, we show its application potential in the visualization of Deep‐Learning architectures and the analysis of hyperspectral images. |
doi_str_mv | 10.1111/cgf.12878 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825539170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825539170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4348-95d522fcbee0ead717a2605f4254a82834ced90adeb25e97e9fa6a42e8d0c9473</originalsourceid><addsrcrecordid>eNp10EFLwzAUB_AgCs7pwW8w8KJCZ5ImTXOUsa3inIKK3kKavm6Z3TqTDt23N1r1IJjLy-H3fzz-CB0T3CfhXZhZ2Sc0FekO6hCWiChNuNxFHUzCX2DO99GB9wuMMRMJ76DzzILTzsyt0VXvvqnNXPvGmt4U7Gye1643XOZQFHY1O0R7pa48HH3PLnocDR8GWTS5HV8NLieRYTFLI8kLTmlpcgAMuhBEaJpgXjLKmU5pGjMDhcS6gJxykAJkqRPNKKQFNpKJuItO271rV79uwDdqab2BqtIrqDdekZRyHksicKAnf-ii3rhVuC4oTJiQBMugzlplXO29g1KtnV1qt1UEq8_WVGhNfbUW7EVr32wF2_-hGoxHP4moTVjfwPtvQrsXlYhYcPU0Hatnml3fDLKRuos_ALiwe4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1801479109</pqid></control><display><type>article</type><title>Hierarchical Stochastic Neighbor Embedding</title><source>Business Source Complete</source><source>Wiley Online Library All Journals</source><creator>Pezzotti, N. ; Höllt, T. ; Lelieveldt, B. ; Eisemann, E. ; Vilanova, A.</creator><creatorcontrib>Pezzotti, N. ; Höllt, T. ; Lelieveldt, B. ; Eisemann, E. ; Vilanova, A.</creatorcontrib><description>In recent years, dimensionality‐reduction techniques have been developed and are widely used for hypothesis generation in Exploratory Data Analysis. However, these techniques are confronted with overcoming the trade‐off between computation time and the quality of the provided dimensionality reduction. In this work, we address this limitation, by introducing Hierarchical Stochastic Neighbor Embedding (Hierarchical‐SNE). Using a hierarchical representation of the data, we incorporate the well‐known mantra of Overview‐First, Details‐On‐Demand in non‐linear dimensionality reduction. First, the analysis shows an embedding, that reveals only the dominant structures in the data (Overview). Then, by selecting structures that are visible in the overview, the user can filter the data and drill down in the hierarchy. While the user descends into the hierarchy, detailed visualizations of the high‐dimensional structures will lead to new insights. In this paper, we explain how Hierarchical‐SNE scales to the analysis of big datasets. In addition, we show its application potential in the visualization of Deep‐Learning architectures and the analysis of hyperspectral images.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.12878</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Categories and Subject Descriptors (according to ACM CCS) ; Computer graphics ; Data analysis ; Data processing ; Hierarchies ; I.3.0 [Computer Graphics]: General ; Nonlinearity ; Reduction ; Representations ; Stochastic models ; Stochasticity ; Studies ; Tradeoffs ; Visualization</subject><ispartof>Computer graphics forum, 2016-06, Vol.35 (3), p.21-30</ispartof><rights>2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.</rights><rights>2016 The Eurographics Association and John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4348-95d522fcbee0ead717a2605f4254a82834ced90adeb25e97e9fa6a42e8d0c9473</citedby><cites>FETCH-LOGICAL-c4348-95d522fcbee0ead717a2605f4254a82834ced90adeb25e97e9fa6a42e8d0c9473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.12878$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.12878$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Pezzotti, N.</creatorcontrib><creatorcontrib>Höllt, T.</creatorcontrib><creatorcontrib>Lelieveldt, B.</creatorcontrib><creatorcontrib>Eisemann, E.</creatorcontrib><creatorcontrib>Vilanova, A.</creatorcontrib><title>Hierarchical Stochastic Neighbor Embedding</title><title>Computer graphics forum</title><addtitle>Computer Graphics Forum</addtitle><description>In recent years, dimensionality‐reduction techniques have been developed and are widely used for hypothesis generation in Exploratory Data Analysis. However, these techniques are confronted with overcoming the trade‐off between computation time and the quality of the provided dimensionality reduction. In this work, we address this limitation, by introducing Hierarchical Stochastic Neighbor Embedding (Hierarchical‐SNE). Using a hierarchical representation of the data, we incorporate the well‐known mantra of Overview‐First, Details‐On‐Demand in non‐linear dimensionality reduction. First, the analysis shows an embedding, that reveals only the dominant structures in the data (Overview). Then, by selecting structures that are visible in the overview, the user can filter the data and drill down in the hierarchy. While the user descends into the hierarchy, detailed visualizations of the high‐dimensional structures will lead to new insights. In this paper, we explain how Hierarchical‐SNE scales to the analysis of big datasets. In addition, we show its application potential in the visualization of Deep‐Learning architectures and the analysis of hyperspectral images.</description><subject>Categories and Subject Descriptors (according to ACM CCS)</subject><subject>Computer graphics</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Hierarchies</subject><subject>I.3.0 [Computer Graphics]: General</subject><subject>Nonlinearity</subject><subject>Reduction</subject><subject>Representations</subject><subject>Stochastic models</subject><subject>Stochasticity</subject><subject>Studies</subject><subject>Tradeoffs</subject><subject>Visualization</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10EFLwzAUB_AgCs7pwW8w8KJCZ5ImTXOUsa3inIKK3kKavm6Z3TqTDt23N1r1IJjLy-H3fzz-CB0T3CfhXZhZ2Sc0FekO6hCWiChNuNxFHUzCX2DO99GB9wuMMRMJ76DzzILTzsyt0VXvvqnNXPvGmt4U7Gye1643XOZQFHY1O0R7pa48HH3PLnocDR8GWTS5HV8NLieRYTFLI8kLTmlpcgAMuhBEaJpgXjLKmU5pGjMDhcS6gJxykAJkqRPNKKQFNpKJuItO271rV79uwDdqab2BqtIrqDdekZRyHksicKAnf-ii3rhVuC4oTJiQBMugzlplXO29g1KtnV1qt1UEq8_WVGhNfbUW7EVr32wF2_-hGoxHP4moTVjfwPtvQrsXlYhYcPU0Hatnml3fDLKRuos_ALiwe4I</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Pezzotti, N.</creator><creator>Höllt, T.</creator><creator>Lelieveldt, B.</creator><creator>Eisemann, E.</creator><creator>Vilanova, A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201606</creationdate><title>Hierarchical Stochastic Neighbor Embedding</title><author>Pezzotti, N. ; Höllt, T. ; Lelieveldt, B. ; Eisemann, E. ; Vilanova, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4348-95d522fcbee0ead717a2605f4254a82834ced90adeb25e97e9fa6a42e8d0c9473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Categories and Subject Descriptors (according to ACM CCS)</topic><topic>Computer graphics</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Hierarchies</topic><topic>I.3.0 [Computer Graphics]: General</topic><topic>Nonlinearity</topic><topic>Reduction</topic><topic>Representations</topic><topic>Stochastic models</topic><topic>Stochasticity</topic><topic>Studies</topic><topic>Tradeoffs</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pezzotti, N.</creatorcontrib><creatorcontrib>Höllt, T.</creatorcontrib><creatorcontrib>Lelieveldt, B.</creatorcontrib><creatorcontrib>Eisemann, E.</creatorcontrib><creatorcontrib>Vilanova, A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pezzotti, N.</au><au>Höllt, T.</au><au>Lelieveldt, B.</au><au>Eisemann, E.</au><au>Vilanova, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Stochastic Neighbor Embedding</atitle><jtitle>Computer graphics forum</jtitle><addtitle>Computer Graphics Forum</addtitle><date>2016-06</date><risdate>2016</risdate><volume>35</volume><issue>3</issue><spage>21</spage><epage>30</epage><pages>21-30</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>In recent years, dimensionality‐reduction techniques have been developed and are widely used for hypothesis generation in Exploratory Data Analysis. However, these techniques are confronted with overcoming the trade‐off between computation time and the quality of the provided dimensionality reduction. In this work, we address this limitation, by introducing Hierarchical Stochastic Neighbor Embedding (Hierarchical‐SNE). Using a hierarchical representation of the data, we incorporate the well‐known mantra of Overview‐First, Details‐On‐Demand in non‐linear dimensionality reduction. First, the analysis shows an embedding, that reveals only the dominant structures in the data (Overview). Then, by selecting structures that are visible in the overview, the user can filter the data and drill down in the hierarchy. While the user descends into the hierarchy, detailed visualizations of the high‐dimensional structures will lead to new insights. In this paper, we explain how Hierarchical‐SNE scales to the analysis of big datasets. In addition, we show its application potential in the visualization of Deep‐Learning architectures and the analysis of hyperspectral images.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.12878</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7055 |
ispartof | Computer graphics forum, 2016-06, Vol.35 (3), p.21-30 |
issn | 0167-7055 1467-8659 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825539170 |
source | Business Source Complete; Wiley Online Library All Journals |
subjects | Categories and Subject Descriptors (according to ACM CCS) Computer graphics Data analysis Data processing Hierarchies I.3.0 [Computer Graphics]: General Nonlinearity Reduction Representations Stochastic models Stochasticity Studies Tradeoffs Visualization |
title | Hierarchical Stochastic Neighbor Embedding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Stochastic%20Neighbor%20Embedding&rft.jtitle=Computer%20graphics%20forum&rft.au=Pezzotti,%20N.&rft.date=2016-06&rft.volume=35&rft.issue=3&rft.spage=21&rft.epage=30&rft.pages=21-30&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.12878&rft_dat=%3Cproquest_cross%3E1825539170%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1801479109&rft_id=info:pmid/&rfr_iscdi=true |