Constant-pH MD Simulations of DMPA/DMPC Lipid Bilayers

Current constant-pH molecular dynamics (CpHMD) simulations provide a proper treatment of pH effects on the structure and dynamics of soluble biomolecules like peptides and proteins. However, addressing such effects on lipid membrane assemblies has remained problematic until now, despite the importan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2015-12, Vol.11 (12), p.5973-5979
Hauptverfasser: Santos, Hugo A. F., Vila-Viçosa, Diogo, Teixeira, Vitor H., Baptista, António M., Machuqueiro, Miguel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5979
container_issue 12
container_start_page 5973
container_title Journal of chemical theory and computation
container_volume 11
creator Santos, Hugo A. F.
Vila-Viçosa, Diogo
Teixeira, Vitor H.
Baptista, António M.
Machuqueiro, Miguel
description Current constant-pH molecular dynamics (CpHMD) simulations provide a proper treatment of pH effects on the structure and dynamics of soluble biomolecules like peptides and proteins. However, addressing such effects on lipid membrane assemblies has remained problematic until now, despite the important role played by lipid ionization at physiological pH in a plethora of biological processes. Modeling (de)­protonation events in these systems requires a proper consideration of the physicochemical features of the membrane environment, including a sound treatment of solution ions. Here, we apply our recent CpHMD-L method to the study of pH effects on a 25% DMPA/DMPC bilayer membrane model, closely reproducing the correct lipid phases of this system, namely, gel–fluid coexistence at pH 4 and a fluid phase at pH 7. A significant transition is observed for the membrane ionization and mechanical properties at physiological pH, providing a molecular basis for the well-established role of phosphatidic acid (PA) as a key player in the regulation of many cellular events. Also, as reported experimentally, we observed pH-induced PA–PA lipid aggregation at acidic pH. By including the titration of anionic phospholipids, the current methodology makes possible to simulate lipid bilayers with increased realism. To the best of our knowledge, this is the first simulation study dealing with a continuous phospholipid bilayer with pH titration of all constituent lipids.
doi_str_mv 10.1021/acs.jctc.5b00956
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825539108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825539108</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-fcd7e23c7269e77a847f9c211e184f3e28cace6114a055d8d2af6a0820e6498a3</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EoqWwM6GMDKT1-zGWFChSK5CA2XIdW0qVF3Ey9N_j0sKGWO69ujrfNxwArhGcIojRzNgw3dreTtkGQsX4CRgjRlWqOOanvzeSI3ARwhZCQigm52CEOZMSUj4GPGvq0Ju6T9tlsl4kb0U1lKYv4jdpfLJYv85ncWTJqmiLPLkvSrNzXbgEZ96UwV0d9wR8PD68Z8t09fL0nM1XqSFc9am3uXCYWIG5ckIYSYVXFiPkkKSeOCytsY4jRA1kLJc5Np4bKDF0nCppyATcHnrbrvkcXOh1VQTrytLUrhmCRhIzRhSC8n9UUEEIIpJFFB5Q2zUhdM7rtisq0-00gnovVkexei9WH8XGyM2xfdhULv8N_JiMwN0B-I42Q1dHL3_3fQH8EoFH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1747331385</pqid></control><display><type>article</type><title>Constant-pH MD Simulations of DMPA/DMPC Lipid Bilayers</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Santos, Hugo A. F. ; Vila-Viçosa, Diogo ; Teixeira, Vitor H. ; Baptista, António M. ; Machuqueiro, Miguel</creator><creatorcontrib>Santos, Hugo A. F. ; Vila-Viçosa, Diogo ; Teixeira, Vitor H. ; Baptista, António M. ; Machuqueiro, Miguel</creatorcontrib><description>Current constant-pH molecular dynamics (CpHMD) simulations provide a proper treatment of pH effects on the structure and dynamics of soluble biomolecules like peptides and proteins. However, addressing such effects on lipid membrane assemblies has remained problematic until now, despite the important role played by lipid ionization at physiological pH in a plethora of biological processes. Modeling (de)­protonation events in these systems requires a proper consideration of the physicochemical features of the membrane environment, including a sound treatment of solution ions. Here, we apply our recent CpHMD-L method to the study of pH effects on a 25% DMPA/DMPC bilayer membrane model, closely reproducing the correct lipid phases of this system, namely, gel–fluid coexistence at pH 4 and a fluid phase at pH 7. A significant transition is observed for the membrane ionization and mechanical properties at physiological pH, providing a molecular basis for the well-established role of phosphatidic acid (PA) as a key player in the regulation of many cellular events. Also, as reported experimentally, we observed pH-induced PA–PA lipid aggregation at acidic pH. By including the titration of anionic phospholipids, the current methodology makes possible to simulate lipid bilayers with increased realism. To the best of our knowledge, this is the first simulation study dealing with a continuous phospholipid bilayer with pH titration of all constituent lipids.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.5b00956</identifier><identifier>PMID: 26588046</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aniline Compounds - chemistry ; Computer simulation ; Dimyristoylphosphatidylcholine - chemistry ; Dynamics ; Hydrogen-Ion Concentration ; Ionization ; Ions - chemistry ; Lipid Bilayers - chemistry ; Lipids ; Membranes ; Molecular Dynamics Simulation ; Phases ; Phosphatidic Acids - chemistry ; Phospholipids ; Thermodynamics</subject><ispartof>Journal of chemical theory and computation, 2015-12, Vol.11 (12), p.5973-5979</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-fcd7e23c7269e77a847f9c211e184f3e28cace6114a055d8d2af6a0820e6498a3</citedby><cites>FETCH-LOGICAL-a369t-fcd7e23c7269e77a847f9c211e184f3e28cace6114a055d8d2af6a0820e6498a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.5b00956$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.5b00956$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26588046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santos, Hugo A. F.</creatorcontrib><creatorcontrib>Vila-Viçosa, Diogo</creatorcontrib><creatorcontrib>Teixeira, Vitor H.</creatorcontrib><creatorcontrib>Baptista, António M.</creatorcontrib><creatorcontrib>Machuqueiro, Miguel</creatorcontrib><title>Constant-pH MD Simulations of DMPA/DMPC Lipid Bilayers</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Current constant-pH molecular dynamics (CpHMD) simulations provide a proper treatment of pH effects on the structure and dynamics of soluble biomolecules like peptides and proteins. However, addressing such effects on lipid membrane assemblies has remained problematic until now, despite the important role played by lipid ionization at physiological pH in a plethora of biological processes. Modeling (de)­protonation events in these systems requires a proper consideration of the physicochemical features of the membrane environment, including a sound treatment of solution ions. Here, we apply our recent CpHMD-L method to the study of pH effects on a 25% DMPA/DMPC bilayer membrane model, closely reproducing the correct lipid phases of this system, namely, gel–fluid coexistence at pH 4 and a fluid phase at pH 7. A significant transition is observed for the membrane ionization and mechanical properties at physiological pH, providing a molecular basis for the well-established role of phosphatidic acid (PA) as a key player in the regulation of many cellular events. Also, as reported experimentally, we observed pH-induced PA–PA lipid aggregation at acidic pH. By including the titration of anionic phospholipids, the current methodology makes possible to simulate lipid bilayers with increased realism. To the best of our knowledge, this is the first simulation study dealing with a continuous phospholipid bilayer with pH titration of all constituent lipids.</description><subject>Aniline Compounds - chemistry</subject><subject>Computer simulation</subject><subject>Dimyristoylphosphatidylcholine - chemistry</subject><subject>Dynamics</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ionization</subject><subject>Ions - chemistry</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Molecular Dynamics Simulation</subject><subject>Phases</subject><subject>Phosphatidic Acids - chemistry</subject><subject>Phospholipids</subject><subject>Thermodynamics</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtPwzAURi0EoqWwM6GMDKT1-zGWFChSK5CA2XIdW0qVF3Ey9N_j0sKGWO69ujrfNxwArhGcIojRzNgw3dreTtkGQsX4CRgjRlWqOOanvzeSI3ARwhZCQigm52CEOZMSUj4GPGvq0Ju6T9tlsl4kb0U1lKYv4jdpfLJYv85ncWTJqmiLPLkvSrNzXbgEZ96UwV0d9wR8PD68Z8t09fL0nM1XqSFc9am3uXCYWIG5ckIYSYVXFiPkkKSeOCytsY4jRA1kLJc5Np4bKDF0nCppyATcHnrbrvkcXOh1VQTrytLUrhmCRhIzRhSC8n9UUEEIIpJFFB5Q2zUhdM7rtisq0-00gnovVkexei9WH8XGyM2xfdhULv8N_JiMwN0B-I42Q1dHL3_3fQH8EoFH</recordid><startdate>20151208</startdate><enddate>20151208</enddate><creator>Santos, Hugo A. F.</creator><creator>Vila-Viçosa, Diogo</creator><creator>Teixeira, Vitor H.</creator><creator>Baptista, António M.</creator><creator>Machuqueiro, Miguel</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151208</creationdate><title>Constant-pH MD Simulations of DMPA/DMPC Lipid Bilayers</title><author>Santos, Hugo A. F. ; Vila-Viçosa, Diogo ; Teixeira, Vitor H. ; Baptista, António M. ; Machuqueiro, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-fcd7e23c7269e77a847f9c211e184f3e28cace6114a055d8d2af6a0820e6498a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aniline Compounds - chemistry</topic><topic>Computer simulation</topic><topic>Dimyristoylphosphatidylcholine - chemistry</topic><topic>Dynamics</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ionization</topic><topic>Ions - chemistry</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Molecular Dynamics Simulation</topic><topic>Phases</topic><topic>Phosphatidic Acids - chemistry</topic><topic>Phospholipids</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Hugo A. F.</creatorcontrib><creatorcontrib>Vila-Viçosa, Diogo</creatorcontrib><creatorcontrib>Teixeira, Vitor H.</creatorcontrib><creatorcontrib>Baptista, António M.</creatorcontrib><creatorcontrib>Machuqueiro, Miguel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Hugo A. F.</au><au>Vila-Viçosa, Diogo</au><au>Teixeira, Vitor H.</au><au>Baptista, António M.</au><au>Machuqueiro, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constant-pH MD Simulations of DMPA/DMPC Lipid Bilayers</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2015-12-08</date><risdate>2015</risdate><volume>11</volume><issue>12</issue><spage>5973</spage><epage>5979</epage><pages>5973-5979</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Current constant-pH molecular dynamics (CpHMD) simulations provide a proper treatment of pH effects on the structure and dynamics of soluble biomolecules like peptides and proteins. However, addressing such effects on lipid membrane assemblies has remained problematic until now, despite the important role played by lipid ionization at physiological pH in a plethora of biological processes. Modeling (de)­protonation events in these systems requires a proper consideration of the physicochemical features of the membrane environment, including a sound treatment of solution ions. Here, we apply our recent CpHMD-L method to the study of pH effects on a 25% DMPA/DMPC bilayer membrane model, closely reproducing the correct lipid phases of this system, namely, gel–fluid coexistence at pH 4 and a fluid phase at pH 7. A significant transition is observed for the membrane ionization and mechanical properties at physiological pH, providing a molecular basis for the well-established role of phosphatidic acid (PA) as a key player in the regulation of many cellular events. Also, as reported experimentally, we observed pH-induced PA–PA lipid aggregation at acidic pH. By including the titration of anionic phospholipids, the current methodology makes possible to simulate lipid bilayers with increased realism. To the best of our knowledge, this is the first simulation study dealing with a continuous phospholipid bilayer with pH titration of all constituent lipids.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26588046</pmid><doi>10.1021/acs.jctc.5b00956</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2015-12, Vol.11 (12), p.5973-5979
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_1825539108
source MEDLINE; American Chemical Society Journals
subjects Aniline Compounds - chemistry
Computer simulation
Dimyristoylphosphatidylcholine - chemistry
Dynamics
Hydrogen-Ion Concentration
Ionization
Ions - chemistry
Lipid Bilayers - chemistry
Lipids
Membranes
Molecular Dynamics Simulation
Phases
Phosphatidic Acids - chemistry
Phospholipids
Thermodynamics
title Constant-pH MD Simulations of DMPA/DMPC Lipid Bilayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A53%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constant-pH%20MD%20Simulations%20of%20DMPA/DMPC%20Lipid%20Bilayers&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Santos,%20Hugo%20A.%20F.&rft.date=2015-12-08&rft.volume=11&rft.issue=12&rft.spage=5973&rft.epage=5979&rft.pages=5973-5979&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.5b00956&rft_dat=%3Cproquest_cross%3E1825539108%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1747331385&rft_id=info:pmid/26588046&rfr_iscdi=true