Constant-pH MD Simulations of DMPA/DMPC Lipid Bilayers
Current constant-pH molecular dynamics (CpHMD) simulations provide a proper treatment of pH effects on the structure and dynamics of soluble biomolecules like peptides and proteins. However, addressing such effects on lipid membrane assemblies has remained problematic until now, despite the importan...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2015-12, Vol.11 (12), p.5973-5979 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5979 |
---|---|
container_issue | 12 |
container_start_page | 5973 |
container_title | Journal of chemical theory and computation |
container_volume | 11 |
creator | Santos, Hugo A. F. Vila-Viçosa, Diogo Teixeira, Vitor H. Baptista, António M. Machuqueiro, Miguel |
description | Current constant-pH molecular dynamics (CpHMD) simulations provide a proper treatment of pH effects on the structure and dynamics of soluble biomolecules like peptides and proteins. However, addressing such effects on lipid membrane assemblies has remained problematic until now, despite the important role played by lipid ionization at physiological pH in a plethora of biological processes. Modeling (de)protonation events in these systems requires a proper consideration of the physicochemical features of the membrane environment, including a sound treatment of solution ions. Here, we apply our recent CpHMD-L method to the study of pH effects on a 25% DMPA/DMPC bilayer membrane model, closely reproducing the correct lipid phases of this system, namely, gel–fluid coexistence at pH 4 and a fluid phase at pH 7. A significant transition is observed for the membrane ionization and mechanical properties at physiological pH, providing a molecular basis for the well-established role of phosphatidic acid (PA) as a key player in the regulation of many cellular events. Also, as reported experimentally, we observed pH-induced PA–PA lipid aggregation at acidic pH. By including the titration of anionic phospholipids, the current methodology makes possible to simulate lipid bilayers with increased realism. To the best of our knowledge, this is the first simulation study dealing with a continuous phospholipid bilayer with pH titration of all constituent lipids. |
doi_str_mv | 10.1021/acs.jctc.5b00956 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825539108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825539108</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-fcd7e23c7269e77a847f9c211e184f3e28cace6114a055d8d2af6a0820e6498a3</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EoqWwM6GMDKT1-zGWFChSK5CA2XIdW0qVF3Ey9N_j0sKGWO69ujrfNxwArhGcIojRzNgw3dreTtkGQsX4CRgjRlWqOOanvzeSI3ARwhZCQigm52CEOZMSUj4GPGvq0Ju6T9tlsl4kb0U1lKYv4jdpfLJYv85ncWTJqmiLPLkvSrNzXbgEZ96UwV0d9wR8PD68Z8t09fL0nM1XqSFc9am3uXCYWIG5ckIYSYVXFiPkkKSeOCytsY4jRA1kLJc5Np4bKDF0nCppyATcHnrbrvkcXOh1VQTrytLUrhmCRhIzRhSC8n9UUEEIIpJFFB5Q2zUhdM7rtisq0-00gnovVkexei9WH8XGyM2xfdhULv8N_JiMwN0B-I42Q1dHL3_3fQH8EoFH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1747331385</pqid></control><display><type>article</type><title>Constant-pH MD Simulations of DMPA/DMPC Lipid Bilayers</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Santos, Hugo A. F. ; Vila-Viçosa, Diogo ; Teixeira, Vitor H. ; Baptista, António M. ; Machuqueiro, Miguel</creator><creatorcontrib>Santos, Hugo A. F. ; Vila-Viçosa, Diogo ; Teixeira, Vitor H. ; Baptista, António M. ; Machuqueiro, Miguel</creatorcontrib><description>Current constant-pH molecular dynamics (CpHMD) simulations provide a proper treatment of pH effects on the structure and dynamics of soluble biomolecules like peptides and proteins. However, addressing such effects on lipid membrane assemblies has remained problematic until now, despite the important role played by lipid ionization at physiological pH in a plethora of biological processes. Modeling (de)protonation events in these systems requires a proper consideration of the physicochemical features of the membrane environment, including a sound treatment of solution ions. Here, we apply our recent CpHMD-L method to the study of pH effects on a 25% DMPA/DMPC bilayer membrane model, closely reproducing the correct lipid phases of this system, namely, gel–fluid coexistence at pH 4 and a fluid phase at pH 7. A significant transition is observed for the membrane ionization and mechanical properties at physiological pH, providing a molecular basis for the well-established role of phosphatidic acid (PA) as a key player in the regulation of many cellular events. Also, as reported experimentally, we observed pH-induced PA–PA lipid aggregation at acidic pH. By including the titration of anionic phospholipids, the current methodology makes possible to simulate lipid bilayers with increased realism. To the best of our knowledge, this is the first simulation study dealing with a continuous phospholipid bilayer with pH titration of all constituent lipids.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.5b00956</identifier><identifier>PMID: 26588046</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aniline Compounds - chemistry ; Computer simulation ; Dimyristoylphosphatidylcholine - chemistry ; Dynamics ; Hydrogen-Ion Concentration ; Ionization ; Ions - chemistry ; Lipid Bilayers - chemistry ; Lipids ; Membranes ; Molecular Dynamics Simulation ; Phases ; Phosphatidic Acids - chemistry ; Phospholipids ; Thermodynamics</subject><ispartof>Journal of chemical theory and computation, 2015-12, Vol.11 (12), p.5973-5979</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-fcd7e23c7269e77a847f9c211e184f3e28cace6114a055d8d2af6a0820e6498a3</citedby><cites>FETCH-LOGICAL-a369t-fcd7e23c7269e77a847f9c211e184f3e28cace6114a055d8d2af6a0820e6498a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.5b00956$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.5b00956$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26588046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santos, Hugo A. F.</creatorcontrib><creatorcontrib>Vila-Viçosa, Diogo</creatorcontrib><creatorcontrib>Teixeira, Vitor H.</creatorcontrib><creatorcontrib>Baptista, António M.</creatorcontrib><creatorcontrib>Machuqueiro, Miguel</creatorcontrib><title>Constant-pH MD Simulations of DMPA/DMPC Lipid Bilayers</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Current constant-pH molecular dynamics (CpHMD) simulations provide a proper treatment of pH effects on the structure and dynamics of soluble biomolecules like peptides and proteins. However, addressing such effects on lipid membrane assemblies has remained problematic until now, despite the important role played by lipid ionization at physiological pH in a plethora of biological processes. Modeling (de)protonation events in these systems requires a proper consideration of the physicochemical features of the membrane environment, including a sound treatment of solution ions. Here, we apply our recent CpHMD-L method to the study of pH effects on a 25% DMPA/DMPC bilayer membrane model, closely reproducing the correct lipid phases of this system, namely, gel–fluid coexistence at pH 4 and a fluid phase at pH 7. A significant transition is observed for the membrane ionization and mechanical properties at physiological pH, providing a molecular basis for the well-established role of phosphatidic acid (PA) as a key player in the regulation of many cellular events. Also, as reported experimentally, we observed pH-induced PA–PA lipid aggregation at acidic pH. By including the titration of anionic phospholipids, the current methodology makes possible to simulate lipid bilayers with increased realism. To the best of our knowledge, this is the first simulation study dealing with a continuous phospholipid bilayer with pH titration of all constituent lipids.</description><subject>Aniline Compounds - chemistry</subject><subject>Computer simulation</subject><subject>Dimyristoylphosphatidylcholine - chemistry</subject><subject>Dynamics</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ionization</subject><subject>Ions - chemistry</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Molecular Dynamics Simulation</subject><subject>Phases</subject><subject>Phosphatidic Acids - chemistry</subject><subject>Phospholipids</subject><subject>Thermodynamics</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtPwzAURi0EoqWwM6GMDKT1-zGWFChSK5CA2XIdW0qVF3Ey9N_j0sKGWO69ujrfNxwArhGcIojRzNgw3dreTtkGQsX4CRgjRlWqOOanvzeSI3ARwhZCQigm52CEOZMSUj4GPGvq0Ju6T9tlsl4kb0U1lKYv4jdpfLJYv85ncWTJqmiLPLkvSrNzXbgEZ96UwV0d9wR8PD68Z8t09fL0nM1XqSFc9am3uXCYWIG5ckIYSYVXFiPkkKSeOCytsY4jRA1kLJc5Np4bKDF0nCppyATcHnrbrvkcXOh1VQTrytLUrhmCRhIzRhSC8n9UUEEIIpJFFB5Q2zUhdM7rtisq0-00gnovVkexei9WH8XGyM2xfdhULv8N_JiMwN0B-I42Q1dHL3_3fQH8EoFH</recordid><startdate>20151208</startdate><enddate>20151208</enddate><creator>Santos, Hugo A. F.</creator><creator>Vila-Viçosa, Diogo</creator><creator>Teixeira, Vitor H.</creator><creator>Baptista, António M.</creator><creator>Machuqueiro, Miguel</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151208</creationdate><title>Constant-pH MD Simulations of DMPA/DMPC Lipid Bilayers</title><author>Santos, Hugo A. F. ; Vila-Viçosa, Diogo ; Teixeira, Vitor H. ; Baptista, António M. ; Machuqueiro, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-fcd7e23c7269e77a847f9c211e184f3e28cace6114a055d8d2af6a0820e6498a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aniline Compounds - chemistry</topic><topic>Computer simulation</topic><topic>Dimyristoylphosphatidylcholine - chemistry</topic><topic>Dynamics</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ionization</topic><topic>Ions - chemistry</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Molecular Dynamics Simulation</topic><topic>Phases</topic><topic>Phosphatidic Acids - chemistry</topic><topic>Phospholipids</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Hugo A. F.</creatorcontrib><creatorcontrib>Vila-Viçosa, Diogo</creatorcontrib><creatorcontrib>Teixeira, Vitor H.</creatorcontrib><creatorcontrib>Baptista, António M.</creatorcontrib><creatorcontrib>Machuqueiro, Miguel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Hugo A. F.</au><au>Vila-Viçosa, Diogo</au><au>Teixeira, Vitor H.</au><au>Baptista, António M.</au><au>Machuqueiro, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constant-pH MD Simulations of DMPA/DMPC Lipid Bilayers</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2015-12-08</date><risdate>2015</risdate><volume>11</volume><issue>12</issue><spage>5973</spage><epage>5979</epage><pages>5973-5979</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Current constant-pH molecular dynamics (CpHMD) simulations provide a proper treatment of pH effects on the structure and dynamics of soluble biomolecules like peptides and proteins. However, addressing such effects on lipid membrane assemblies has remained problematic until now, despite the important role played by lipid ionization at physiological pH in a plethora of biological processes. Modeling (de)protonation events in these systems requires a proper consideration of the physicochemical features of the membrane environment, including a sound treatment of solution ions. Here, we apply our recent CpHMD-L method to the study of pH effects on a 25% DMPA/DMPC bilayer membrane model, closely reproducing the correct lipid phases of this system, namely, gel–fluid coexistence at pH 4 and a fluid phase at pH 7. A significant transition is observed for the membrane ionization and mechanical properties at physiological pH, providing a molecular basis for the well-established role of phosphatidic acid (PA) as a key player in the regulation of many cellular events. Also, as reported experimentally, we observed pH-induced PA–PA lipid aggregation at acidic pH. By including the titration of anionic phospholipids, the current methodology makes possible to simulate lipid bilayers with increased realism. To the best of our knowledge, this is the first simulation study dealing with a continuous phospholipid bilayer with pH titration of all constituent lipids.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26588046</pmid><doi>10.1021/acs.jctc.5b00956</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2015-12, Vol.11 (12), p.5973-5979 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825539108 |
source | MEDLINE; American Chemical Society Journals |
subjects | Aniline Compounds - chemistry Computer simulation Dimyristoylphosphatidylcholine - chemistry Dynamics Hydrogen-Ion Concentration Ionization Ions - chemistry Lipid Bilayers - chemistry Lipids Membranes Molecular Dynamics Simulation Phases Phosphatidic Acids - chemistry Phospholipids Thermodynamics |
title | Constant-pH MD Simulations of DMPA/DMPC Lipid Bilayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A53%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constant-pH%20MD%20Simulations%20of%20DMPA/DMPC%20Lipid%20Bilayers&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Santos,%20Hugo%20A.%20F.&rft.date=2015-12-08&rft.volume=11&rft.issue=12&rft.spage=5973&rft.epage=5979&rft.pages=5973-5979&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.5b00956&rft_dat=%3Cproquest_cross%3E1825539108%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1747331385&rft_id=info:pmid/26588046&rfr_iscdi=true |