Visual Analysis of Spatial Variability and Global Correlations in Ensembles of Iso-Contours
For an ensemble of iso‐contours in multi‐dimensional scalar fields, we present new methods to a) visualize their dominant spatial patterns of variability, and b) to compute the conditional probability of the occurrence of a contour at one location given the occurrence at some other location. We firs...
Gespeichert in:
Veröffentlicht in: | Computer graphics forum 2016-06, Vol.35 (3), p.221-230 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 230 |
---|---|
container_issue | 3 |
container_start_page | 221 |
container_title | Computer graphics forum |
container_volume | 35 |
creator | Ferstl, F. Kanzler, M. Rautenhaus, M. Westermann, R. |
description | For an ensemble of iso‐contours in multi‐dimensional scalar fields, we present new methods to a) visualize their dominant spatial patterns of variability, and b) to compute the conditional probability of the occurrence of a contour at one location given the occurrence at some other location. We first show how to derive a statistical model describing the contour variability, by representing the contours implicitly via signed distance functions and clustering similar functions in a reduced order space. We show that the spatial patterns of the ensemble can then be derived by analytically transforming the boundaries of a confidence interval computed from each cluster into the spatial domain. Furthermore, we introduce a mathematical basis for computing correlations between the occurrences of iso‐contours at different locations. We show that the computation of these correlations can be posed in the reduced order space as an integration problem over a region bounded by four hyper‐planes. To visualize the derived statistical properties we employ a variant of variability plots for streamlines, now including the color coding of probabilities of joint contour occurrences. We demonstrate the use of the proposed techniques for ensemble exploration in a number of 2D and 3D examples, using artificial and meteorological data sets. |
doi_str_mv | 10.1111/cgf.12898 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825538864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4107220081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3688-c7dd128f2e7c8bc715c8f06437e0d92a70284decdf72ce09c90d56e345c47e8f3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqUw8A8iscCQ1k7i2BmriKaVKkBQ2oHBchwHubhxsVNB_z1uAwxI3HKn0_dO7x4AlwgOkK-heK0HKKIZPQI9lKQkpCnOjkEPIj8TiPEpOHNuBSFMSIp74GWh3JbrYNRwvXPKBaYOnja8VX634FbxUmnV7gLeVEGhTenXubFWao-YxgWqCW4bJ9ellgft1JkwN01rttadg5OaaycvvnsfPI9v5_kknN0X03w0C0WcUhoKUlXech1JImgpCMKC1jBNYiJhlUWcwIgmlRRVTSIhYSYyWOFUxgkWCZG0jvvguru7seZ9K13L1soJqTVvpNk6hmiEcUypP9kHV3_QlXfqf99TECUkQwh66qajhDXOWVmzjVVrbncMQbaPmfmY2SFmzw479kNpufsfZHkx_lGEnUK5Vn7-Krh9YymJCWbLu4I9TgoUzx8Ktoy_AHnqjW0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1801479110</pqid></control><display><type>article</type><title>Visual Analysis of Spatial Variability and Global Correlations in Ensembles of Iso-Contours</title><source>Wiley Journals</source><source>EBSCOhost Business Source Complete</source><creator>Ferstl, F. ; Kanzler, M. ; Rautenhaus, M. ; Westermann, R.</creator><creatorcontrib>Ferstl, F. ; Kanzler, M. ; Rautenhaus, M. ; Westermann, R.</creatorcontrib><description>For an ensemble of iso‐contours in multi‐dimensional scalar fields, we present new methods to a) visualize their dominant spatial patterns of variability, and b) to compute the conditional probability of the occurrence of a contour at one location given the occurrence at some other location. We first show how to derive a statistical model describing the contour variability, by representing the contours implicitly via signed distance functions and clustering similar functions in a reduced order space. We show that the spatial patterns of the ensemble can then be derived by analytically transforming the boundaries of a confidence interval computed from each cluster into the spatial domain. Furthermore, we introduce a mathematical basis for computing correlations between the occurrences of iso‐contours at different locations. We show that the computation of these correlations can be posed in the reduced order space as an integration problem over a region bounded by four hyper‐planes. To visualize the derived statistical properties we employ a variant of variability plots for streamlines, now including the color coding of probabilities of joint contour occurrences. We demonstrate the use of the proposed techniques for ensemble exploration in a number of 2D and 3D examples, using artificial and meteorological data sets.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.12898</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Analysis ; Categories and Subject Descriptors (according to ACM CCS) ; Color coding ; Computation ; Computer graphics ; Correlation ; Datasets ; I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation ; Mathematical analysis ; Mathematical models ; Reduced order ; Shape ; Studies ; Three dimensional ; Visualization</subject><ispartof>Computer graphics forum, 2016-06, Vol.35 (3), p.221-230</ispartof><rights>2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.</rights><rights>2016 The Eurographics Association and John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3688-c7dd128f2e7c8bc715c8f06437e0d92a70284decdf72ce09c90d56e345c47e8f3</citedby><cites>FETCH-LOGICAL-c3688-c7dd128f2e7c8bc715c8f06437e0d92a70284decdf72ce09c90d56e345c47e8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.12898$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.12898$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ferstl, F.</creatorcontrib><creatorcontrib>Kanzler, M.</creatorcontrib><creatorcontrib>Rautenhaus, M.</creatorcontrib><creatorcontrib>Westermann, R.</creatorcontrib><title>Visual Analysis of Spatial Variability and Global Correlations in Ensembles of Iso-Contours</title><title>Computer graphics forum</title><addtitle>Computer Graphics Forum</addtitle><description>For an ensemble of iso‐contours in multi‐dimensional scalar fields, we present new methods to a) visualize their dominant spatial patterns of variability, and b) to compute the conditional probability of the occurrence of a contour at one location given the occurrence at some other location. We first show how to derive a statistical model describing the contour variability, by representing the contours implicitly via signed distance functions and clustering similar functions in a reduced order space. We show that the spatial patterns of the ensemble can then be derived by analytically transforming the boundaries of a confidence interval computed from each cluster into the spatial domain. Furthermore, we introduce a mathematical basis for computing correlations between the occurrences of iso‐contours at different locations. We show that the computation of these correlations can be posed in the reduced order space as an integration problem over a region bounded by four hyper‐planes. To visualize the derived statistical properties we employ a variant of variability plots for streamlines, now including the color coding of probabilities of joint contour occurrences. We demonstrate the use of the proposed techniques for ensemble exploration in a number of 2D and 3D examples, using artificial and meteorological data sets.</description><subject>Analysis</subject><subject>Categories and Subject Descriptors (according to ACM CCS)</subject><subject>Color coding</subject><subject>Computation</subject><subject>Computer graphics</subject><subject>Correlation</subject><subject>Datasets</subject><subject>I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Reduced order</subject><subject>Shape</subject><subject>Studies</subject><subject>Three dimensional</subject><subject>Visualization</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqUw8A8iscCQ1k7i2BmriKaVKkBQ2oHBchwHubhxsVNB_z1uAwxI3HKn0_dO7x4AlwgOkK-heK0HKKIZPQI9lKQkpCnOjkEPIj8TiPEpOHNuBSFMSIp74GWh3JbrYNRwvXPKBaYOnja8VX634FbxUmnV7gLeVEGhTenXubFWao-YxgWqCW4bJ9ellgft1JkwN01rttadg5OaaycvvnsfPI9v5_kknN0X03w0C0WcUhoKUlXech1JImgpCMKC1jBNYiJhlUWcwIgmlRRVTSIhYSYyWOFUxgkWCZG0jvvguru7seZ9K13L1soJqTVvpNk6hmiEcUypP9kHV3_QlXfqf99TECUkQwh66qajhDXOWVmzjVVrbncMQbaPmfmY2SFmzw479kNpufsfZHkx_lGEnUK5Vn7-Krh9YymJCWbLu4I9TgoUzx8Ktoy_AHnqjW0</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Ferstl, F.</creator><creator>Kanzler, M.</creator><creator>Rautenhaus, M.</creator><creator>Westermann, R.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201606</creationdate><title>Visual Analysis of Spatial Variability and Global Correlations in Ensembles of Iso-Contours</title><author>Ferstl, F. ; Kanzler, M. ; Rautenhaus, M. ; Westermann, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3688-c7dd128f2e7c8bc715c8f06437e0d92a70284decdf72ce09c90d56e345c47e8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Categories and Subject Descriptors (according to ACM CCS)</topic><topic>Color coding</topic><topic>Computation</topic><topic>Computer graphics</topic><topic>Correlation</topic><topic>Datasets</topic><topic>I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Reduced order</topic><topic>Shape</topic><topic>Studies</topic><topic>Three dimensional</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferstl, F.</creatorcontrib><creatorcontrib>Kanzler, M.</creatorcontrib><creatorcontrib>Rautenhaus, M.</creatorcontrib><creatorcontrib>Westermann, R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferstl, F.</au><au>Kanzler, M.</au><au>Rautenhaus, M.</au><au>Westermann, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual Analysis of Spatial Variability and Global Correlations in Ensembles of Iso-Contours</atitle><jtitle>Computer graphics forum</jtitle><addtitle>Computer Graphics Forum</addtitle><date>2016-06</date><risdate>2016</risdate><volume>35</volume><issue>3</issue><spage>221</spage><epage>230</epage><pages>221-230</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>For an ensemble of iso‐contours in multi‐dimensional scalar fields, we present new methods to a) visualize their dominant spatial patterns of variability, and b) to compute the conditional probability of the occurrence of a contour at one location given the occurrence at some other location. We first show how to derive a statistical model describing the contour variability, by representing the contours implicitly via signed distance functions and clustering similar functions in a reduced order space. We show that the spatial patterns of the ensemble can then be derived by analytically transforming the boundaries of a confidence interval computed from each cluster into the spatial domain. Furthermore, we introduce a mathematical basis for computing correlations between the occurrences of iso‐contours at different locations. We show that the computation of these correlations can be posed in the reduced order space as an integration problem over a region bounded by four hyper‐planes. To visualize the derived statistical properties we employ a variant of variability plots for streamlines, now including the color coding of probabilities of joint contour occurrences. We demonstrate the use of the proposed techniques for ensemble exploration in a number of 2D and 3D examples, using artificial and meteorological data sets.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.12898</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7055 |
ispartof | Computer graphics forum, 2016-06, Vol.35 (3), p.221-230 |
issn | 0167-7055 1467-8659 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825538864 |
source | Wiley Journals; EBSCOhost Business Source Complete |
subjects | Analysis Categories and Subject Descriptors (according to ACM CCS) Color coding Computation Computer graphics Correlation Datasets I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation Mathematical analysis Mathematical models Reduced order Shape Studies Three dimensional Visualization |
title | Visual Analysis of Spatial Variability and Global Correlations in Ensembles of Iso-Contours |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20Analysis%20of%20Spatial%20Variability%20and%20Global%20Correlations%20in%20Ensembles%20of%20Iso-Contours&rft.jtitle=Computer%20graphics%20forum&rft.au=Ferstl,%20F.&rft.date=2016-06&rft.volume=35&rft.issue=3&rft.spage=221&rft.epage=230&rft.pages=221-230&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.12898&rft_dat=%3Cproquest_cross%3E4107220081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1801479110&rft_id=info:pmid/&rfr_iscdi=true |