Pedestrian Density Analysis in Public Scenes With Spatiotemporal Tensor Features
Pedestrian density estimation is one of the key problems in intelligent transportation systems and has been widely applied to a number of applications in other fields of engineering. Counting-by-regression methods are more favorable for coping with such a problem owing to their robustness against in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2016-07, Vol.17 (7), p.1968-1977 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1977 |
---|---|
container_issue | 7 |
container_start_page | 1968 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 17 |
creator | Ke Chen Kamarainen, Joni-Kristian |
description | Pedestrian density estimation is one of the key problems in intelligent transportation systems and has been widely applied to a number of applications in other fields of engineering. Counting-by-regression methods are more favorable for coping with such a problem owing to their robustness against interperson occlusion and relaxing the impractical requirement of a high video frame rate, compared to counting-by-detection and counting-by-clustering methods. However, imagery features in the existing counting-by-regression approaches are extracted from the whole region or spatially localized cells/pixels of each single video frame, which omits the unique motion patterns of the same pedestrians across the neighboring frames. In the light of this, this paper exploits a novel tensor-formed spatiotemporal feature representation and applies it in a multilinear regression learning framework, which can capture spatially distributed dynamic crowd patterns by discovering the latent multidimensional structural correlations of tensor features along both spatial (i.e., horizontal and vertical) and temporal dimensions. Extensive evaluation with the public UCSD and Shopping Mall benchmarks demonstrate superior performance of our approach to the state-of-the-art counting methods even when the surveillance data has a low frame rate. |
doi_str_mv | 10.1109/TITS.2016.2516586 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825535375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7442578</ieee_id><sourcerecordid>4102728511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-f63f4a18c868747866ff6b6e8c2585441874c9680cbefefc5d052a3cda3ccc2e3</originalsourceid><addsrcrecordid>eNpdkE9LAzEQxYMoWKsfQLwEvHjZmv-bPZZqtVCw0BWPS5pOMGW7W5PdQ7-9WVo8eBhmePzewHsI3VMyoZQUz-WiXE8YoWrCJFVSqws0olLqjCTtcriZyAoiyTW6iXGXVCEpHaHVCrYQu-BNg1-gib474mlj6mP0EfsGr_pN7S1eW2gg4i_ffeP1wXS-7WB_aIOpcZlcbcBzMF0fIN6iK2fqCHfnPUaf89dy9p4tP94Ws-kys5ypLnOKO2GotlrpXORaKefURoG2TGopBE2qLZQmdgMOnJVbIpnhdpvGWgZ8jJ5Ofw-h_elThGrvo4W6Ng20fayoZlJyyXOZ0Md_6K7tQwqZqLwoCk0o14miJ8qGNsYArjoEvzfhWFFSDR1XQ8fV0HF17jh5Hk4eDwB_fC4Ek7nmvxF2eAs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799980138</pqid></control><display><type>article</type><title>Pedestrian Density Analysis in Public Scenes With Spatiotemporal Tensor Features</title><source>IEEE Electronic Library (IEL)</source><creator>Ke Chen ; Kamarainen, Joni-Kristian</creator><creatorcontrib>Ke Chen ; Kamarainen, Joni-Kristian</creatorcontrib><description>Pedestrian density estimation is one of the key problems in intelligent transportation systems and has been widely applied to a number of applications in other fields of engineering. Counting-by-regression methods are more favorable for coping with such a problem owing to their robustness against interperson occlusion and relaxing the impractical requirement of a high video frame rate, compared to counting-by-detection and counting-by-clustering methods. However, imagery features in the existing counting-by-regression approaches are extracted from the whole region or spatially localized cells/pixels of each single video frame, which omits the unique motion patterns of the same pedestrians across the neighboring frames. In the light of this, this paper exploits a novel tensor-formed spatiotemporal feature representation and applies it in a multilinear regression learning framework, which can capture spatially distributed dynamic crowd patterns by discovering the latent multidimensional structural correlations of tensor features along both spatial (i.e., horizontal and vertical) and temporal dimensions. Extensive evaluation with the public UCSD and Shopping Mall benchmarks demonstrate superior performance of our approach to the state-of-the-art counting methods even when the surveillance data has a low frame rate.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2016.2516586</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Correlation ; Density ; Estimation ; Feature extraction ; Frames ; Image edge detection ; Intelligent transportation systems ; Mathematical analysis ; multilinear learning ; Pedestrian density analysis ; Pedestrians ; regression ; Robustness ; Shopping malls ; spatiotemporal features ; Spatiotemporal phenomena ; Tensile stress ; tensor ; Tensors</subject><ispartof>IEEE transactions on intelligent transportation systems, 2016-07, Vol.17 (7), p.1968-1977</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-f63f4a18c868747866ff6b6e8c2585441874c9680cbefefc5d052a3cda3ccc2e3</citedby><cites>FETCH-LOGICAL-c326t-f63f4a18c868747866ff6b6e8c2585441874c9680cbefefc5d052a3cda3ccc2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7442578$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7442578$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ke Chen</creatorcontrib><creatorcontrib>Kamarainen, Joni-Kristian</creatorcontrib><title>Pedestrian Density Analysis in Public Scenes With Spatiotemporal Tensor Features</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Pedestrian density estimation is one of the key problems in intelligent transportation systems and has been widely applied to a number of applications in other fields of engineering. Counting-by-regression methods are more favorable for coping with such a problem owing to their robustness against interperson occlusion and relaxing the impractical requirement of a high video frame rate, compared to counting-by-detection and counting-by-clustering methods. However, imagery features in the existing counting-by-regression approaches are extracted from the whole region or spatially localized cells/pixels of each single video frame, which omits the unique motion patterns of the same pedestrians across the neighboring frames. In the light of this, this paper exploits a novel tensor-formed spatiotemporal feature representation and applies it in a multilinear regression learning framework, which can capture spatially distributed dynamic crowd patterns by discovering the latent multidimensional structural correlations of tensor features along both spatial (i.e., horizontal and vertical) and temporal dimensions. Extensive evaluation with the public UCSD and Shopping Mall benchmarks demonstrate superior performance of our approach to the state-of-the-art counting methods even when the surveillance data has a low frame rate.</description><subject>Correlation</subject><subject>Density</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Frames</subject><subject>Image edge detection</subject><subject>Intelligent transportation systems</subject><subject>Mathematical analysis</subject><subject>multilinear learning</subject><subject>Pedestrian density analysis</subject><subject>Pedestrians</subject><subject>regression</subject><subject>Robustness</subject><subject>Shopping malls</subject><subject>spatiotemporal features</subject><subject>Spatiotemporal phenomena</subject><subject>Tensile stress</subject><subject>tensor</subject><subject>Tensors</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9LAzEQxYMoWKsfQLwEvHjZmv-bPZZqtVCw0BWPS5pOMGW7W5PdQ7-9WVo8eBhmePzewHsI3VMyoZQUz-WiXE8YoWrCJFVSqws0olLqjCTtcriZyAoiyTW6iXGXVCEpHaHVCrYQu-BNg1-gib474mlj6mP0EfsGr_pN7S1eW2gg4i_ffeP1wXS-7WB_aIOpcZlcbcBzMF0fIN6iK2fqCHfnPUaf89dy9p4tP94Ws-kys5ypLnOKO2GotlrpXORaKefURoG2TGopBE2qLZQmdgMOnJVbIpnhdpvGWgZ8jJ5Ofw-h_elThGrvo4W6Ng20fayoZlJyyXOZ0Md_6K7tQwqZqLwoCk0o14miJ8qGNsYArjoEvzfhWFFSDR1XQ8fV0HF17jh5Hk4eDwB_fC4Ek7nmvxF2eAs</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Ke Chen</creator><creator>Kamarainen, Joni-Kristian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20160701</creationdate><title>Pedestrian Density Analysis in Public Scenes With Spatiotemporal Tensor Features</title><author>Ke Chen ; Kamarainen, Joni-Kristian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-f63f4a18c868747866ff6b6e8c2585441874c9680cbefefc5d052a3cda3ccc2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Correlation</topic><topic>Density</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Frames</topic><topic>Image edge detection</topic><topic>Intelligent transportation systems</topic><topic>Mathematical analysis</topic><topic>multilinear learning</topic><topic>Pedestrian density analysis</topic><topic>Pedestrians</topic><topic>regression</topic><topic>Robustness</topic><topic>Shopping malls</topic><topic>spatiotemporal features</topic><topic>Spatiotemporal phenomena</topic><topic>Tensile stress</topic><topic>tensor</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ke Chen</creatorcontrib><creatorcontrib>Kamarainen, Joni-Kristian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ke Chen</au><au>Kamarainen, Joni-Kristian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pedestrian Density Analysis in Public Scenes With Spatiotemporal Tensor Features</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>17</volume><issue>7</issue><spage>1968</spage><epage>1977</epage><pages>1968-1977</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Pedestrian density estimation is one of the key problems in intelligent transportation systems and has been widely applied to a number of applications in other fields of engineering. Counting-by-regression methods are more favorable for coping with such a problem owing to their robustness against interperson occlusion and relaxing the impractical requirement of a high video frame rate, compared to counting-by-detection and counting-by-clustering methods. However, imagery features in the existing counting-by-regression approaches are extracted from the whole region or spatially localized cells/pixels of each single video frame, which omits the unique motion patterns of the same pedestrians across the neighboring frames. In the light of this, this paper exploits a novel tensor-formed spatiotemporal feature representation and applies it in a multilinear regression learning framework, which can capture spatially distributed dynamic crowd patterns by discovering the latent multidimensional structural correlations of tensor features along both spatial (i.e., horizontal and vertical) and temporal dimensions. Extensive evaluation with the public UCSD and Shopping Mall benchmarks demonstrate superior performance of our approach to the state-of-the-art counting methods even when the surveillance data has a low frame rate.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2016.2516586</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2016-07, Vol.17 (7), p.1968-1977 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825535375 |
source | IEEE Electronic Library (IEL) |
subjects | Correlation Density Estimation Feature extraction Frames Image edge detection Intelligent transportation systems Mathematical analysis multilinear learning Pedestrian density analysis Pedestrians regression Robustness Shopping malls spatiotemporal features Spatiotemporal phenomena Tensile stress tensor Tensors |
title | Pedestrian Density Analysis in Public Scenes With Spatiotemporal Tensor Features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pedestrian%20Density%20Analysis%20in%20Public%20Scenes%20With%20Spatiotemporal%20Tensor%20Features&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Ke%20Chen&rft.date=2016-07-01&rft.volume=17&rft.issue=7&rft.spage=1968&rft.epage=1977&rft.pages=1968-1977&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2016.2516586&rft_dat=%3Cproquest_RIE%3E4102728511%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799980138&rft_id=info:pmid/&rft_ieee_id=7442578&rfr_iscdi=true |