Laser-Induced Demagnetization at Ultrashort Time Scales: Predictions of TDDFT

Time-dependent density functional theory (TDDFT) is implemented in an all electron solid-state code for the case of fully unconstrained noncollinear spins. We use this to study intense, short, laser pulse-induced demagnetization in bulk Fe, Co, Ni and find that demagnetization can take place on time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2015-10, Vol.11 (10), p.4870-4874
Hauptverfasser: Krieger, K, Dewhurst, J. K, Elliott, P, Sharma, S, Gross, E. K. U
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4874
container_issue 10
container_start_page 4870
container_title Journal of chemical theory and computation
container_volume 11
creator Krieger, K
Dewhurst, J. K
Elliott, P
Sharma, S
Gross, E. K. U
description Time-dependent density functional theory (TDDFT) is implemented in an all electron solid-state code for the case of fully unconstrained noncollinear spins. We use this to study intense, short, laser pulse-induced demagnetization in bulk Fe, Co, Ni and find that demagnetization can take place on time scales of
doi_str_mv 10.1021/acs.jctc.5b00621
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825531143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825531143</sourcerecordid><originalsourceid>FETCH-LOGICAL-a435t-a3091c50059b4f31e9c05c024bf903e78439490c835d459d770f52b5a4c207a53</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EoqWwMyGPDKRcv5KYDbUUkIpAop0tx3EgVR7Fdgb49aS0dENM9w7nfMNB6JzAmAAl19r48coEMxYZQEzJARoSwWUkYxof7n-SDtCJ9ysAxjhlx2hA4zSVgqRD9DTX3rrosck7Y3M8tbV-a2wov3Qo2wbrgJdVcNq_ty7gRVlb_Gp0Zf0NfnE2L82G8rgt8GI6nS1O0VGhK2_PdneElrO7xeQhmj_fP05u55HmTIRIM5DECAAhM14wYqUBYYDyrJDAbJJyJrkEkzKRcyHzJIFC0ExobigkWrARutzurl370VkfVF16Y6tKN7btvCIpFYIRwtn_aBInkBBO4x6FLWpc672zhVq7stbuUxFQm96q7602vdWud69c7Na7rLb5XvgN3ANXW-BHbTvX9F3-3vsGYieJgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767071426</pqid></control><display><type>article</type><title>Laser-Induced Demagnetization at Ultrashort Time Scales: Predictions of TDDFT</title><source>ACS Publications</source><creator>Krieger, K ; Dewhurst, J. K ; Elliott, P ; Sharma, S ; Gross, E. K. U</creator><creatorcontrib>Krieger, K ; Dewhurst, J. K ; Elliott, P ; Sharma, S ; Gross, E. K. U</creatorcontrib><description>Time-dependent density functional theory (TDDFT) is implemented in an all electron solid-state code for the case of fully unconstrained noncollinear spins. We use this to study intense, short, laser pulse-induced demagnetization in bulk Fe, Co, Ni and find that demagnetization can take place on time scales of &lt;20 fs. It is demonstrated that this form of demagnetization is a two-step process: excitation of a fraction of electrons followed by spin-flip transitions mediated by spin–orbit coupling of the remaining localized electrons. We further show that it is possible to control the moment loss by tunable laser parameters, including frequency, duration, and intensity.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.5b00621</identifier><identifier>PMID: 26889518</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Demagnetization ; Density functional theory ; Iron ; Lasers ; Nickel ; Time ; Time dependence ; Tunable lasers</subject><ispartof>Journal of chemical theory and computation, 2015-10, Vol.11 (10), p.4870-4874</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a435t-a3091c50059b4f31e9c05c024bf903e78439490c835d459d770f52b5a4c207a53</citedby><cites>FETCH-LOGICAL-a435t-a3091c50059b4f31e9c05c024bf903e78439490c835d459d770f52b5a4c207a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.5b00621$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.5b00621$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2769,27085,27933,27934,56747,56797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26889518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krieger, K</creatorcontrib><creatorcontrib>Dewhurst, J. K</creatorcontrib><creatorcontrib>Elliott, P</creatorcontrib><creatorcontrib>Sharma, S</creatorcontrib><creatorcontrib>Gross, E. K. U</creatorcontrib><title>Laser-Induced Demagnetization at Ultrashort Time Scales: Predictions of TDDFT</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Time-dependent density functional theory (TDDFT) is implemented in an all electron solid-state code for the case of fully unconstrained noncollinear spins. We use this to study intense, short, laser pulse-induced demagnetization in bulk Fe, Co, Ni and find that demagnetization can take place on time scales of &lt;20 fs. It is demonstrated that this form of demagnetization is a two-step process: excitation of a fraction of electrons followed by spin-flip transitions mediated by spin–orbit coupling of the remaining localized electrons. We further show that it is possible to control the moment loss by tunable laser parameters, including frequency, duration, and intensity.</description><subject>Demagnetization</subject><subject>Density functional theory</subject><subject>Iron</subject><subject>Lasers</subject><subject>Nickel</subject><subject>Time</subject><subject>Time dependence</subject><subject>Tunable lasers</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAURi0EoqWwMyGPDKRcv5KYDbUUkIpAop0tx3EgVR7Fdgb49aS0dENM9w7nfMNB6JzAmAAl19r48coEMxYZQEzJARoSwWUkYxof7n-SDtCJ9ysAxjhlx2hA4zSVgqRD9DTX3rrosck7Y3M8tbV-a2wov3Qo2wbrgJdVcNq_ty7gRVlb_Gp0Zf0NfnE2L82G8rgt8GI6nS1O0VGhK2_PdneElrO7xeQhmj_fP05u55HmTIRIM5DECAAhM14wYqUBYYDyrJDAbJJyJrkEkzKRcyHzJIFC0ExobigkWrARutzurl370VkfVF16Y6tKN7btvCIpFYIRwtn_aBInkBBO4x6FLWpc672zhVq7stbuUxFQm96q7602vdWud69c7Na7rLb5XvgN3ANXW-BHbTvX9F3-3vsGYieJgQ</recordid><startdate>20151013</startdate><enddate>20151013</enddate><creator>Krieger, K</creator><creator>Dewhurst, J. K</creator><creator>Elliott, P</creator><creator>Sharma, S</creator><creator>Gross, E. K. U</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151013</creationdate><title>Laser-Induced Demagnetization at Ultrashort Time Scales: Predictions of TDDFT</title><author>Krieger, K ; Dewhurst, J. K ; Elliott, P ; Sharma, S ; Gross, E. K. U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a435t-a3091c50059b4f31e9c05c024bf903e78439490c835d459d770f52b5a4c207a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Demagnetization</topic><topic>Density functional theory</topic><topic>Iron</topic><topic>Lasers</topic><topic>Nickel</topic><topic>Time</topic><topic>Time dependence</topic><topic>Tunable lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krieger, K</creatorcontrib><creatorcontrib>Dewhurst, J. K</creatorcontrib><creatorcontrib>Elliott, P</creatorcontrib><creatorcontrib>Sharma, S</creatorcontrib><creatorcontrib>Gross, E. K. U</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krieger, K</au><au>Dewhurst, J. K</au><au>Elliott, P</au><au>Sharma, S</au><au>Gross, E. K. U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser-Induced Demagnetization at Ultrashort Time Scales: Predictions of TDDFT</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2015-10-13</date><risdate>2015</risdate><volume>11</volume><issue>10</issue><spage>4870</spage><epage>4874</epage><pages>4870-4874</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Time-dependent density functional theory (TDDFT) is implemented in an all electron solid-state code for the case of fully unconstrained noncollinear spins. We use this to study intense, short, laser pulse-induced demagnetization in bulk Fe, Co, Ni and find that demagnetization can take place on time scales of &lt;20 fs. It is demonstrated that this form of demagnetization is a two-step process: excitation of a fraction of electrons followed by spin-flip transitions mediated by spin–orbit coupling of the remaining localized electrons. We further show that it is possible to control the moment loss by tunable laser parameters, including frequency, duration, and intensity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26889518</pmid><doi>10.1021/acs.jctc.5b00621</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2015-10, Vol.11 (10), p.4870-4874
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_1825531143
source ACS Publications
subjects Demagnetization
Density functional theory
Iron
Lasers
Nickel
Time
Time dependence
Tunable lasers
title Laser-Induced Demagnetization at Ultrashort Time Scales: Predictions of TDDFT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T01%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser-Induced%20Demagnetization%20at%20Ultrashort%20Time%20Scales:%20Predictions%20of%20TDDFT&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Krieger,%20K&rft.date=2015-10-13&rft.volume=11&rft.issue=10&rft.spage=4870&rft.epage=4874&rft.pages=4870-4874&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.5b00621&rft_dat=%3Cproquest_cross%3E1825531143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767071426&rft_id=info:pmid/26889518&rfr_iscdi=true