Laser-Induced Demagnetization at Ultrashort Time Scales: Predictions of TDDFT
Time-dependent density functional theory (TDDFT) is implemented in an all electron solid-state code for the case of fully unconstrained noncollinear spins. We use this to study intense, short, laser pulse-induced demagnetization in bulk Fe, Co, Ni and find that demagnetization can take place on time...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2015-10, Vol.11 (10), p.4870-4874 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4874 |
---|---|
container_issue | 10 |
container_start_page | 4870 |
container_title | Journal of chemical theory and computation |
container_volume | 11 |
creator | Krieger, K Dewhurst, J. K Elliott, P Sharma, S Gross, E. K. U |
description | Time-dependent density functional theory (TDDFT) is implemented in an all electron solid-state code for the case of fully unconstrained noncollinear spins. We use this to study intense, short, laser pulse-induced demagnetization in bulk Fe, Co, Ni and find that demagnetization can take place on time scales of |
doi_str_mv | 10.1021/acs.jctc.5b00621 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825531143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825531143</sourcerecordid><originalsourceid>FETCH-LOGICAL-a435t-a3091c50059b4f31e9c05c024bf903e78439490c835d459d770f52b5a4c207a53</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EoqWwMyGPDKRcv5KYDbUUkIpAop0tx3EgVR7Fdgb49aS0dENM9w7nfMNB6JzAmAAl19r48coEMxYZQEzJARoSwWUkYxof7n-SDtCJ9ysAxjhlx2hA4zSVgqRD9DTX3rrosck7Y3M8tbV-a2wov3Qo2wbrgJdVcNq_ty7gRVlb_Gp0Zf0NfnE2L82G8rgt8GI6nS1O0VGhK2_PdneElrO7xeQhmj_fP05u55HmTIRIM5DECAAhM14wYqUBYYDyrJDAbJJyJrkEkzKRcyHzJIFC0ExobigkWrARutzurl370VkfVF16Y6tKN7btvCIpFYIRwtn_aBInkBBO4x6FLWpc672zhVq7stbuUxFQm96q7602vdWud69c7Na7rLb5XvgN3ANXW-BHbTvX9F3-3vsGYieJgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767071426</pqid></control><display><type>article</type><title>Laser-Induced Demagnetization at Ultrashort Time Scales: Predictions of TDDFT</title><source>ACS Publications</source><creator>Krieger, K ; Dewhurst, J. K ; Elliott, P ; Sharma, S ; Gross, E. K. U</creator><creatorcontrib>Krieger, K ; Dewhurst, J. K ; Elliott, P ; Sharma, S ; Gross, E. K. U</creatorcontrib><description>Time-dependent density functional theory (TDDFT) is implemented in an all electron solid-state code for the case of fully unconstrained noncollinear spins. We use this to study intense, short, laser pulse-induced demagnetization in bulk Fe, Co, Ni and find that demagnetization can take place on time scales of <20 fs. It is demonstrated that this form of demagnetization is a two-step process: excitation of a fraction of electrons followed by spin-flip transitions mediated by spin–orbit coupling of the remaining localized electrons. We further show that it is possible to control the moment loss by tunable laser parameters, including frequency, duration, and intensity.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.5b00621</identifier><identifier>PMID: 26889518</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Demagnetization ; Density functional theory ; Iron ; Lasers ; Nickel ; Time ; Time dependence ; Tunable lasers</subject><ispartof>Journal of chemical theory and computation, 2015-10, Vol.11 (10), p.4870-4874</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a435t-a3091c50059b4f31e9c05c024bf903e78439490c835d459d770f52b5a4c207a53</citedby><cites>FETCH-LOGICAL-a435t-a3091c50059b4f31e9c05c024bf903e78439490c835d459d770f52b5a4c207a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.5b00621$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.5b00621$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2769,27085,27933,27934,56747,56797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26889518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krieger, K</creatorcontrib><creatorcontrib>Dewhurst, J. K</creatorcontrib><creatorcontrib>Elliott, P</creatorcontrib><creatorcontrib>Sharma, S</creatorcontrib><creatorcontrib>Gross, E. K. U</creatorcontrib><title>Laser-Induced Demagnetization at Ultrashort Time Scales: Predictions of TDDFT</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Time-dependent density functional theory (TDDFT) is implemented in an all electron solid-state code for the case of fully unconstrained noncollinear spins. We use this to study intense, short, laser pulse-induced demagnetization in bulk Fe, Co, Ni and find that demagnetization can take place on time scales of <20 fs. It is demonstrated that this form of demagnetization is a two-step process: excitation of a fraction of electrons followed by spin-flip transitions mediated by spin–orbit coupling of the remaining localized electrons. We further show that it is possible to control the moment loss by tunable laser parameters, including frequency, duration, and intensity.</description><subject>Demagnetization</subject><subject>Density functional theory</subject><subject>Iron</subject><subject>Lasers</subject><subject>Nickel</subject><subject>Time</subject><subject>Time dependence</subject><subject>Tunable lasers</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAURi0EoqWwMyGPDKRcv5KYDbUUkIpAop0tx3EgVR7Fdgb49aS0dENM9w7nfMNB6JzAmAAl19r48coEMxYZQEzJARoSwWUkYxof7n-SDtCJ9ysAxjhlx2hA4zSVgqRD9DTX3rrosck7Y3M8tbV-a2wov3Qo2wbrgJdVcNq_ty7gRVlb_Gp0Zf0NfnE2L82G8rgt8GI6nS1O0VGhK2_PdneElrO7xeQhmj_fP05u55HmTIRIM5DECAAhM14wYqUBYYDyrJDAbJJyJrkEkzKRcyHzJIFC0ExobigkWrARutzurl370VkfVF16Y6tKN7btvCIpFYIRwtn_aBInkBBO4x6FLWpc672zhVq7stbuUxFQm96q7602vdWud69c7Na7rLb5XvgN3ANXW-BHbTvX9F3-3vsGYieJgQ</recordid><startdate>20151013</startdate><enddate>20151013</enddate><creator>Krieger, K</creator><creator>Dewhurst, J. K</creator><creator>Elliott, P</creator><creator>Sharma, S</creator><creator>Gross, E. K. U</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151013</creationdate><title>Laser-Induced Demagnetization at Ultrashort Time Scales: Predictions of TDDFT</title><author>Krieger, K ; Dewhurst, J. K ; Elliott, P ; Sharma, S ; Gross, E. K. U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a435t-a3091c50059b4f31e9c05c024bf903e78439490c835d459d770f52b5a4c207a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Demagnetization</topic><topic>Density functional theory</topic><topic>Iron</topic><topic>Lasers</topic><topic>Nickel</topic><topic>Time</topic><topic>Time dependence</topic><topic>Tunable lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krieger, K</creatorcontrib><creatorcontrib>Dewhurst, J. K</creatorcontrib><creatorcontrib>Elliott, P</creatorcontrib><creatorcontrib>Sharma, S</creatorcontrib><creatorcontrib>Gross, E. K. U</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krieger, K</au><au>Dewhurst, J. K</au><au>Elliott, P</au><au>Sharma, S</au><au>Gross, E. K. U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser-Induced Demagnetization at Ultrashort Time Scales: Predictions of TDDFT</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2015-10-13</date><risdate>2015</risdate><volume>11</volume><issue>10</issue><spage>4870</spage><epage>4874</epage><pages>4870-4874</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Time-dependent density functional theory (TDDFT) is implemented in an all electron solid-state code for the case of fully unconstrained noncollinear spins. We use this to study intense, short, laser pulse-induced demagnetization in bulk Fe, Co, Ni and find that demagnetization can take place on time scales of <20 fs. It is demonstrated that this form of demagnetization is a two-step process: excitation of a fraction of electrons followed by spin-flip transitions mediated by spin–orbit coupling of the remaining localized electrons. We further show that it is possible to control the moment loss by tunable laser parameters, including frequency, duration, and intensity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26889518</pmid><doi>10.1021/acs.jctc.5b00621</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2015-10, Vol.11 (10), p.4870-4874 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825531143 |
source | ACS Publications |
subjects | Demagnetization Density functional theory Iron Lasers Nickel Time Time dependence Tunable lasers |
title | Laser-Induced Demagnetization at Ultrashort Time Scales: Predictions of TDDFT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T01%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser-Induced%20Demagnetization%20at%20Ultrashort%20Time%20Scales:%20Predictions%20of%20TDDFT&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Krieger,%20K&rft.date=2015-10-13&rft.volume=11&rft.issue=10&rft.spage=4870&rft.epage=4874&rft.pages=4870-4874&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.5b00621&rft_dat=%3Cproquest_cross%3E1825531143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767071426&rft_id=info:pmid/26889518&rfr_iscdi=true |