Graph-Based Salient Region Detection through Linear Neighborhoods
Pairwise neighboring relationships estimated by Gaussian weight function have been extensively adopted in the graph-based salient region detection methods recently. However, the learning of the parameters remains a problem as nonoptimal models will affect the detection results significantly. To tack...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2016-01, Vol.2016 (2016), p.1-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 2016 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2016 |
creator | Hu, Xiao Peng Yang, Yan Wang, Fan Xu, Lijuan Yuanyuan, Sun |
description | Pairwise neighboring relationships estimated by Gaussian weight function have been extensively adopted in the graph-based salient region detection methods recently. However, the learning of the parameters remains a problem as nonoptimal models will affect the detection results significantly. To tackle this challenge, we first apply the adjacent information provided by all neighbors of each node to construct the undirected weight graph, based on the assumption that every node can be optimally reconstructed by a linear combination of its neighbors. Then, the saliency detection is modeled as the process of graph labelling by learning from partially selected seeds (labeled data) in the graph. The promising experimental results presented on some datasets demonstrate the effectiveness and reliability of our proposed graph-based saliency detection method through linear neighborhoods. |
doi_str_mv | 10.1155/2016/8740593 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825528276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4100964061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-2b19827fc1f89d4a2e37f22e039226ba8da9e089b56ce5961ca0f2e1b39c53383</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuAgCtbqzbMEvAgauzObTXaPtWoVioIf4C1skkmTkmbrboL4701JQfDiad7Dw8zwet4psGsAISbIIJrIOGRC8T1vBCLigYAw3u8zwzAA5B-H3pFzK8YQBMiRN51bvSmDG-0o9191XVHT-i-0rEzj31JLWbtNbWlNtyz9RdWQtv4TVcsyNbY0JnfH3kGha0cnuzn23u_v3mYPweJ5_jibLoKMC9YGmIKSGBcZFFLloUbicYFIjCvEKNUy14qYVKmIMhIqgkyzAglSrjLBueRj72LYu7HmsyPXJuvKZVTXuiHTuQQkCoH9iain53_oynS26b9LIFZKIIbIenU1qMwa5ywVycZWa22_E2DJts9k22ey67PnlwMvqybXX9V_-mzQ1Bsq9K8GwFhI_gNj_HzZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799522420</pqid></control><display><type>article</type><title>Graph-Based Salient Region Detection through Linear Neighborhoods</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Hu, Xiao Peng ; Yang, Yan ; Wang, Fan ; Xu, Lijuan ; Yuanyuan, Sun</creator><contributor>Jung, Chanho</contributor><creatorcontrib>Hu, Xiao Peng ; Yang, Yan ; Wang, Fan ; Xu, Lijuan ; Yuanyuan, Sun ; Jung, Chanho</creatorcontrib><description>Pairwise neighboring relationships estimated by Gaussian weight function have been extensively adopted in the graph-based salient region detection methods recently. However, the learning of the parameters remains a problem as nonoptimal models will affect the detection results significantly. To tackle this challenge, we first apply the adjacent information provided by all neighbors of each node to construct the undirected weight graph, based on the assumption that every node can be optimally reconstructed by a linear combination of its neighbors. Then, the saliency detection is modeled as the process of graph labelling by learning from partially selected seeds (labeled data) in the graph. The promising experimental results presented on some datasets demonstrate the effectiveness and reliability of our proposed graph-based saliency detection method through linear neighborhoods.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2016/8740593</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Datasets ; Gaussian ; Graphs ; Image retrieval ; Information dissemination ; Labeling ; Labelling ; Learning ; Mathematical models ; Neighborhoods ; Optimization ; Salience ; Teaching methods ; Weight function ; Weighting functions</subject><ispartof>Mathematical problems in engineering, 2016-01, Vol.2016 (2016), p.1-11</ispartof><rights>Copyright © 2016 Lijuan Xu et al.</rights><rights>Copyright © 2016 Lijuan Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c350t-2b19827fc1f89d4a2e37f22e039226ba8da9e089b56ce5961ca0f2e1b39c53383</cites><orcidid>0000-0003-4445-2722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Jung, Chanho</contributor><creatorcontrib>Hu, Xiao Peng</creatorcontrib><creatorcontrib>Yang, Yan</creatorcontrib><creatorcontrib>Wang, Fan</creatorcontrib><creatorcontrib>Xu, Lijuan</creatorcontrib><creatorcontrib>Yuanyuan, Sun</creatorcontrib><title>Graph-Based Salient Region Detection through Linear Neighborhoods</title><title>Mathematical problems in engineering</title><description>Pairwise neighboring relationships estimated by Gaussian weight function have been extensively adopted in the graph-based salient region detection methods recently. However, the learning of the parameters remains a problem as nonoptimal models will affect the detection results significantly. To tackle this challenge, we first apply the adjacent information provided by all neighbors of each node to construct the undirected weight graph, based on the assumption that every node can be optimally reconstructed by a linear combination of its neighbors. Then, the saliency detection is modeled as the process of graph labelling by learning from partially selected seeds (labeled data) in the graph. The promising experimental results presented on some datasets demonstrate the effectiveness and reliability of our proposed graph-based saliency detection method through linear neighborhoods.</description><subject>Datasets</subject><subject>Gaussian</subject><subject>Graphs</subject><subject>Image retrieval</subject><subject>Information dissemination</subject><subject>Labeling</subject><subject>Labelling</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Neighborhoods</subject><subject>Optimization</subject><subject>Salience</subject><subject>Teaching methods</subject><subject>Weight function</subject><subject>Weighting functions</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1Lw0AQBuAgCtbqzbMEvAgauzObTXaPtWoVioIf4C1skkmTkmbrboL4701JQfDiad7Dw8zwet4psGsAISbIIJrIOGRC8T1vBCLigYAw3u8zwzAA5B-H3pFzK8YQBMiRN51bvSmDG-0o9191XVHT-i-0rEzj31JLWbtNbWlNtyz9RdWQtv4TVcsyNbY0JnfH3kGha0cnuzn23u_v3mYPweJ5_jibLoKMC9YGmIKSGBcZFFLloUbicYFIjCvEKNUy14qYVKmIMhIqgkyzAglSrjLBueRj72LYu7HmsyPXJuvKZVTXuiHTuQQkCoH9iain53_oynS26b9LIFZKIIbIenU1qMwa5ywVycZWa22_E2DJts9k22ey67PnlwMvqybXX9V_-mzQ1Bsq9K8GwFhI_gNj_HzZ</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Hu, Xiao Peng</creator><creator>Yang, Yan</creator><creator>Wang, Fan</creator><creator>Xu, Lijuan</creator><creator>Yuanyuan, Sun</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-4445-2722</orcidid></search><sort><creationdate>20160101</creationdate><title>Graph-Based Salient Region Detection through Linear Neighborhoods</title><author>Hu, Xiao Peng ; Yang, Yan ; Wang, Fan ; Xu, Lijuan ; Yuanyuan, Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-2b19827fc1f89d4a2e37f22e039226ba8da9e089b56ce5961ca0f2e1b39c53383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Datasets</topic><topic>Gaussian</topic><topic>Graphs</topic><topic>Image retrieval</topic><topic>Information dissemination</topic><topic>Labeling</topic><topic>Labelling</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Neighborhoods</topic><topic>Optimization</topic><topic>Salience</topic><topic>Teaching methods</topic><topic>Weight function</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xiao Peng</creatorcontrib><creatorcontrib>Yang, Yan</creatorcontrib><creatorcontrib>Wang, Fan</creatorcontrib><creatorcontrib>Xu, Lijuan</creatorcontrib><creatorcontrib>Yuanyuan, Sun</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Xiao Peng</au><au>Yang, Yan</au><au>Wang, Fan</au><au>Xu, Lijuan</au><au>Yuanyuan, Sun</au><au>Jung, Chanho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph-Based Salient Region Detection through Linear Neighborhoods</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Pairwise neighboring relationships estimated by Gaussian weight function have been extensively adopted in the graph-based salient region detection methods recently. However, the learning of the parameters remains a problem as nonoptimal models will affect the detection results significantly. To tackle this challenge, we first apply the adjacent information provided by all neighbors of each node to construct the undirected weight graph, based on the assumption that every node can be optimally reconstructed by a linear combination of its neighbors. Then, the saliency detection is modeled as the process of graph labelling by learning from partially selected seeds (labeled data) in the graph. The promising experimental results presented on some datasets demonstrate the effectiveness and reliability of our proposed graph-based saliency detection method through linear neighborhoods.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2016/8740593</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4445-2722</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2016-01, Vol.2016 (2016), p.1-11 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825528276 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection |
subjects | Datasets Gaussian Graphs Image retrieval Information dissemination Labeling Labelling Learning Mathematical models Neighborhoods Optimization Salience Teaching methods Weight function Weighting functions |
title | Graph-Based Salient Region Detection through Linear Neighborhoods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph-Based%20Salient%20Region%20Detection%20through%20Linear%20Neighborhoods&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Hu,%20Xiao%20Peng&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2016/8740593&rft_dat=%3Cproquest_cross%3E4100964061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799522420&rft_id=info:pmid/&rfr_iscdi=true |