Ground‐level observation of a terrestrial gamma ray flash initiated by a triggered lightning
We report on a terrestrial gamma ray flash (TGF) that occurred on 15 August 2014 coincident with an altitude‐triggered lightning at the International Center for Lightning Research and Testing (ICLRT) in North Central Florida. The TGF was observed by a ground‐level network of gamma ray, close electri...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2016-06, Vol.121 (11), p.6511-6533 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6533 |
---|---|
container_issue | 11 |
container_start_page | 6511 |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 121 |
creator | Hare, B. M. Uman, M. A. Dwyer, J. R. Jordan, D. M. Biggerstaff, M. I. Caicedo, J. A. Carvalho, F. L. Wilkes, R. A. Kotovsky, D. A. Gamerota, W. R. Pilkey, J. T. Ngin, T. K. Moore, R. C. Rassoul, H. K. Cummer, S. A. Grove, J. E. Nag, A. Betten, D. P. Bozarth, A. |
description | We report on a terrestrial gamma ray flash (TGF) that occurred on 15 August 2014 coincident with an altitude‐triggered lightning at the International Center for Lightning Research and Testing (ICLRT) in North Central Florida. The TGF was observed by a ground‐level network of gamma ray, close electric field, distant magnetic field, Lightning Mapping Array (LMA), optical, and radar measurements. Simultaneous gamma ray and LMA data indicate that the upward positive leader of the triggered lightning flash induced relativistic runaway electron avalanches when the leader tip was at about 3.5 km altitude, resulting in the observed TGF. Channel luminosity and electric field data show that there was an initial continuous current (ICC) pulse in the lightning channel to ground during the time of the TGF. Modeling of the observed ICC pulse electric fields measured at close range (100–200 m) indicates that the ICC pulse current had both a slow and fast component (full widths at half maximum of 235 μs and 59 μs) and that the fast component was more or less coincident with the TGF, suggesting a physical association between the relativistic runaway electron avalanches and the ICC pulse observed at ground. Our ICC pulse model reproduces moderately well the measured close electric fields at the ICLRT as well as three independent magnetic field measurements made about 250 km away. Radar and LMA data suggest that there was negative charge near the region in which the TGF was initiated.
Key Points
Best documented TGF observed at ground
Second TGF induced by triggered lightning
An ICC pulse occurred simultaneously (within 20 μs) of the TGF |
doi_str_mv | 10.1002/2015JD024426 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825527856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4102496951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4778-ae45f40c99545a3aface99f6db639c86f2c13872f66f7dc7e1d3702d2e6f611d3</originalsourceid><addsrcrecordid>eNqN0c1Kw0AQAOAgCpbamw-w4MWD0f3J_h2l1WopCKLgybBNdtMtm6TuJpXcfASf0ScxpSLiQZzLzMDHMMNE0TGC5whCfIEhorMJxEmC2V40wIjJWEjJ9r9r_nQYjUJYwT4EJAlNBtHz1NdtlX-8vTu90Q7Ui6D9RjW2rkBtgAKN9l6HxlvlQKHKUgGvOmCcCktgK9tY1egcLLot9bYotO9bZ4tlU9mqOIoOjHJBj77yMHq8vnoY38Tzu-nt-HIeZwnnIlY6oSaBmZQ0oYooozItpWH5ghGZCWZwhojg2DBmeJ5xjXLCIc6xZoahvhlGp7u5a1-_tP2-aWlDpp1Tla7bkCKBKcVcUPYPCgWTWFDR05NfdFW3vuoPSRGXUiLOyXbg2U5lvg7Ba5OuvS2V71IE0-1r0p-v6TnZ8VfrdPenTWfT-wklkAjyCQBKj_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799917736</pqid></control><display><type>article</type><title>Ground‐level observation of a terrestrial gamma ray flash initiated by a triggered lightning</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Hare, B. M. ; Uman, M. A. ; Dwyer, J. R. ; Jordan, D. M. ; Biggerstaff, M. I. ; Caicedo, J. A. ; Carvalho, F. L. ; Wilkes, R. A. ; Kotovsky, D. A. ; Gamerota, W. R. ; Pilkey, J. T. ; Ngin, T. K. ; Moore, R. C. ; Rassoul, H. K. ; Cummer, S. A. ; Grove, J. E. ; Nag, A. ; Betten, D. P. ; Bozarth, A.</creator><creatorcontrib>Hare, B. M. ; Uman, M. A. ; Dwyer, J. R. ; Jordan, D. M. ; Biggerstaff, M. I. ; Caicedo, J. A. ; Carvalho, F. L. ; Wilkes, R. A. ; Kotovsky, D. A. ; Gamerota, W. R. ; Pilkey, J. T. ; Ngin, T. K. ; Moore, R. C. ; Rassoul, H. K. ; Cummer, S. A. ; Grove, J. E. ; Nag, A. ; Betten, D. P. ; Bozarth, A.</creatorcontrib><description>We report on a terrestrial gamma ray flash (TGF) that occurred on 15 August 2014 coincident with an altitude‐triggered lightning at the International Center for Lightning Research and Testing (ICLRT) in North Central Florida. The TGF was observed by a ground‐level network of gamma ray, close electric field, distant magnetic field, Lightning Mapping Array (LMA), optical, and radar measurements. Simultaneous gamma ray and LMA data indicate that the upward positive leader of the triggered lightning flash induced relativistic runaway electron avalanches when the leader tip was at about 3.5 km altitude, resulting in the observed TGF. Channel luminosity and electric field data show that there was an initial continuous current (ICC) pulse in the lightning channel to ground during the time of the TGF. Modeling of the observed ICC pulse electric fields measured at close range (100–200 m) indicates that the ICC pulse current had both a slow and fast component (full widths at half maximum of 235 μs and 59 μs) and that the fast component was more or less coincident with the TGF, suggesting a physical association between the relativistic runaway electron avalanches and the ICC pulse observed at ground. Our ICC pulse model reproduces moderately well the measured close electric fields at the ICLRT as well as three independent magnetic field measurements made about 250 km away. Radar and LMA data suggest that there was negative charge near the region in which the TGF was initiated.
Key Points
Best documented TGF observed at ground
Second TGF induced by triggered lightning
An ICC pulse occurred simultaneously (within 20 μs) of the TGF</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2015JD024426</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Altitude ; Channels ; Charge ; Electric fields ; Electron avalanche ; gamma radiation ; Gamma rays ; Geophysics ; Ground-based observation ; ICC pulses ; Lightning ; Luminosity ; Magnetic fields ; Meteorology ; Radar ; RREA ; TGF ; Triggered lightning</subject><ispartof>Journal of geophysical research. Atmospheres, 2016-06, Vol.121 (11), p.6511-6533</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4778-ae45f40c99545a3aface99f6db639c86f2c13872f66f7dc7e1d3702d2e6f611d3</citedby><cites>FETCH-LOGICAL-c4778-ae45f40c99545a3aface99f6db639c86f2c13872f66f7dc7e1d3702d2e6f611d3</cites><orcidid>0000-0003-0681-7276 ; 0000-0001-8308-1907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015JD024426$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015JD024426$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Hare, B. M.</creatorcontrib><creatorcontrib>Uman, M. A.</creatorcontrib><creatorcontrib>Dwyer, J. R.</creatorcontrib><creatorcontrib>Jordan, D. M.</creatorcontrib><creatorcontrib>Biggerstaff, M. I.</creatorcontrib><creatorcontrib>Caicedo, J. A.</creatorcontrib><creatorcontrib>Carvalho, F. L.</creatorcontrib><creatorcontrib>Wilkes, R. A.</creatorcontrib><creatorcontrib>Kotovsky, D. A.</creatorcontrib><creatorcontrib>Gamerota, W. R.</creatorcontrib><creatorcontrib>Pilkey, J. T.</creatorcontrib><creatorcontrib>Ngin, T. K.</creatorcontrib><creatorcontrib>Moore, R. C.</creatorcontrib><creatorcontrib>Rassoul, H. K.</creatorcontrib><creatorcontrib>Cummer, S. A.</creatorcontrib><creatorcontrib>Grove, J. E.</creatorcontrib><creatorcontrib>Nag, A.</creatorcontrib><creatorcontrib>Betten, D. P.</creatorcontrib><creatorcontrib>Bozarth, A.</creatorcontrib><title>Ground‐level observation of a terrestrial gamma ray flash initiated by a triggered lightning</title><title>Journal of geophysical research. Atmospheres</title><description>We report on a terrestrial gamma ray flash (TGF) that occurred on 15 August 2014 coincident with an altitude‐triggered lightning at the International Center for Lightning Research and Testing (ICLRT) in North Central Florida. The TGF was observed by a ground‐level network of gamma ray, close electric field, distant magnetic field, Lightning Mapping Array (LMA), optical, and radar measurements. Simultaneous gamma ray and LMA data indicate that the upward positive leader of the triggered lightning flash induced relativistic runaway electron avalanches when the leader tip was at about 3.5 km altitude, resulting in the observed TGF. Channel luminosity and electric field data show that there was an initial continuous current (ICC) pulse in the lightning channel to ground during the time of the TGF. Modeling of the observed ICC pulse electric fields measured at close range (100–200 m) indicates that the ICC pulse current had both a slow and fast component (full widths at half maximum of 235 μs and 59 μs) and that the fast component was more or less coincident with the TGF, suggesting a physical association between the relativistic runaway electron avalanches and the ICC pulse observed at ground. Our ICC pulse model reproduces moderately well the measured close electric fields at the ICLRT as well as three independent magnetic field measurements made about 250 km away. Radar and LMA data suggest that there was negative charge near the region in which the TGF was initiated.
Key Points
Best documented TGF observed at ground
Second TGF induced by triggered lightning
An ICC pulse occurred simultaneously (within 20 μs) of the TGF</description><subject>Altitude</subject><subject>Channels</subject><subject>Charge</subject><subject>Electric fields</subject><subject>Electron avalanche</subject><subject>gamma radiation</subject><subject>Gamma rays</subject><subject>Geophysics</subject><subject>Ground-based observation</subject><subject>ICC pulses</subject><subject>Lightning</subject><subject>Luminosity</subject><subject>Magnetic fields</subject><subject>Meteorology</subject><subject>Radar</subject><subject>RREA</subject><subject>TGF</subject><subject>Triggered lightning</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0c1Kw0AQAOAgCpbamw-w4MWD0f3J_h2l1WopCKLgybBNdtMtm6TuJpXcfASf0ScxpSLiQZzLzMDHMMNE0TGC5whCfIEhorMJxEmC2V40wIjJWEjJ9r9r_nQYjUJYwT4EJAlNBtHz1NdtlX-8vTu90Q7Ui6D9RjW2rkBtgAKN9l6HxlvlQKHKUgGvOmCcCktgK9tY1egcLLot9bYotO9bZ4tlU9mqOIoOjHJBj77yMHq8vnoY38Tzu-nt-HIeZwnnIlY6oSaBmZQ0oYooozItpWH5ghGZCWZwhojg2DBmeJ5xjXLCIc6xZoahvhlGp7u5a1-_tP2-aWlDpp1Tla7bkCKBKcVcUPYPCgWTWFDR05NfdFW3vuoPSRGXUiLOyXbg2U5lvg7Ba5OuvS2V71IE0-1r0p-v6TnZ8VfrdPenTWfT-wklkAjyCQBKj_Q</recordid><startdate>20160616</startdate><enddate>20160616</enddate><creator>Hare, B. M.</creator><creator>Uman, M. A.</creator><creator>Dwyer, J. R.</creator><creator>Jordan, D. M.</creator><creator>Biggerstaff, M. I.</creator><creator>Caicedo, J. A.</creator><creator>Carvalho, F. L.</creator><creator>Wilkes, R. A.</creator><creator>Kotovsky, D. A.</creator><creator>Gamerota, W. R.</creator><creator>Pilkey, J. T.</creator><creator>Ngin, T. K.</creator><creator>Moore, R. C.</creator><creator>Rassoul, H. K.</creator><creator>Cummer, S. A.</creator><creator>Grove, J. E.</creator><creator>Nag, A.</creator><creator>Betten, D. P.</creator><creator>Bozarth, A.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0681-7276</orcidid><orcidid>https://orcid.org/0000-0001-8308-1907</orcidid></search><sort><creationdate>20160616</creationdate><title>Ground‐level observation of a terrestrial gamma ray flash initiated by a triggered lightning</title><author>Hare, B. M. ; Uman, M. A. ; Dwyer, J. R. ; Jordan, D. M. ; Biggerstaff, M. I. ; Caicedo, J. A. ; Carvalho, F. L. ; Wilkes, R. A. ; Kotovsky, D. A. ; Gamerota, W. R. ; Pilkey, J. T. ; Ngin, T. K. ; Moore, R. C. ; Rassoul, H. K. ; Cummer, S. A. ; Grove, J. E. ; Nag, A. ; Betten, D. P. ; Bozarth, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4778-ae45f40c99545a3aface99f6db639c86f2c13872f66f7dc7e1d3702d2e6f611d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Altitude</topic><topic>Channels</topic><topic>Charge</topic><topic>Electric fields</topic><topic>Electron avalanche</topic><topic>gamma radiation</topic><topic>Gamma rays</topic><topic>Geophysics</topic><topic>Ground-based observation</topic><topic>ICC pulses</topic><topic>Lightning</topic><topic>Luminosity</topic><topic>Magnetic fields</topic><topic>Meteorology</topic><topic>Radar</topic><topic>RREA</topic><topic>TGF</topic><topic>Triggered lightning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hare, B. M.</creatorcontrib><creatorcontrib>Uman, M. A.</creatorcontrib><creatorcontrib>Dwyer, J. R.</creatorcontrib><creatorcontrib>Jordan, D. M.</creatorcontrib><creatorcontrib>Biggerstaff, M. I.</creatorcontrib><creatorcontrib>Caicedo, J. A.</creatorcontrib><creatorcontrib>Carvalho, F. L.</creatorcontrib><creatorcontrib>Wilkes, R. A.</creatorcontrib><creatorcontrib>Kotovsky, D. A.</creatorcontrib><creatorcontrib>Gamerota, W. R.</creatorcontrib><creatorcontrib>Pilkey, J. T.</creatorcontrib><creatorcontrib>Ngin, T. K.</creatorcontrib><creatorcontrib>Moore, R. C.</creatorcontrib><creatorcontrib>Rassoul, H. K.</creatorcontrib><creatorcontrib>Cummer, S. A.</creatorcontrib><creatorcontrib>Grove, J. E.</creatorcontrib><creatorcontrib>Nag, A.</creatorcontrib><creatorcontrib>Betten, D. P.</creatorcontrib><creatorcontrib>Bozarth, A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hare, B. M.</au><au>Uman, M. A.</au><au>Dwyer, J. R.</au><au>Jordan, D. M.</au><au>Biggerstaff, M. I.</au><au>Caicedo, J. A.</au><au>Carvalho, F. L.</au><au>Wilkes, R. A.</au><au>Kotovsky, D. A.</au><au>Gamerota, W. R.</au><au>Pilkey, J. T.</au><au>Ngin, T. K.</au><au>Moore, R. C.</au><au>Rassoul, H. K.</au><au>Cummer, S. A.</au><au>Grove, J. E.</au><au>Nag, A.</au><au>Betten, D. P.</au><au>Bozarth, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ground‐level observation of a terrestrial gamma ray flash initiated by a triggered lightning</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2016-06-16</date><risdate>2016</risdate><volume>121</volume><issue>11</issue><spage>6511</spage><epage>6533</epage><pages>6511-6533</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>We report on a terrestrial gamma ray flash (TGF) that occurred on 15 August 2014 coincident with an altitude‐triggered lightning at the International Center for Lightning Research and Testing (ICLRT) in North Central Florida. The TGF was observed by a ground‐level network of gamma ray, close electric field, distant magnetic field, Lightning Mapping Array (LMA), optical, and radar measurements. Simultaneous gamma ray and LMA data indicate that the upward positive leader of the triggered lightning flash induced relativistic runaway electron avalanches when the leader tip was at about 3.5 km altitude, resulting in the observed TGF. Channel luminosity and electric field data show that there was an initial continuous current (ICC) pulse in the lightning channel to ground during the time of the TGF. Modeling of the observed ICC pulse electric fields measured at close range (100–200 m) indicates that the ICC pulse current had both a slow and fast component (full widths at half maximum of 235 μs and 59 μs) and that the fast component was more or less coincident with the TGF, suggesting a physical association between the relativistic runaway electron avalanches and the ICC pulse observed at ground. Our ICC pulse model reproduces moderately well the measured close electric fields at the ICLRT as well as three independent magnetic field measurements made about 250 km away. Radar and LMA data suggest that there was negative charge near the region in which the TGF was initiated.
Key Points
Best documented TGF observed at ground
Second TGF induced by triggered lightning
An ICC pulse occurred simultaneously (within 20 μs) of the TGF</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015JD024426</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0681-7276</orcidid><orcidid>https://orcid.org/0000-0001-8308-1907</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2016-06, Vol.121 (11), p.6511-6533 |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825527856 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Altitude Channels Charge Electric fields Electron avalanche gamma radiation Gamma rays Geophysics Ground-based observation ICC pulses Lightning Luminosity Magnetic fields Meteorology Radar RREA TGF Triggered lightning |
title | Ground‐level observation of a terrestrial gamma ray flash initiated by a triggered lightning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A10%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ground%E2%80%90level%20observation%20of%20a%20terrestrial%20gamma%20ray%20flash%20initiated%20by%20a%20triggered%20lightning&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Hare,%20B.%20M.&rft.date=2016-06-16&rft.volume=121&rft.issue=11&rft.spage=6511&rft.epage=6533&rft.pages=6511-6533&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2015JD024426&rft_dat=%3Cproquest_cross%3E4102496951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799917736&rft_id=info:pmid/&rfr_iscdi=true |