Systematic Error Estimation for Chemical Reaction Energies

For a theoretical understanding of the reactivity of complex chemical systems, accurate relative energies between intermediates and transition states are required. Despite its popularity, density functional theory (DFT) often fails to provide sufficiently accurate data, especially for molecules cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2016-06, Vol.12 (6), p.2762-2773
Hauptverfasser: Simm, Gregor N, Reiher, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2773
container_issue 6
container_start_page 2762
container_title Journal of chemical theory and computation
container_volume 12
creator Simm, Gregor N
Reiher, Markus
description For a theoretical understanding of the reactivity of complex chemical systems, accurate relative energies between intermediates and transition states are required. Despite its popularity, density functional theory (DFT) often fails to provide sufficiently accurate data, especially for molecules containing transition metals. Due to the huge number of intermediates that need to be studied for all but the simplest chemical processes, DFT is, to date, the only method that is computationally feasible. Here, we present a Bayesian framework for DFT that allows for error estimation of calculated properties. Since the optimal choice of parameters in present-day density functionals is strongly system dependent, we advocate for a system-focused reparameterization. While, at first sight, this approach conflicts with the first-principles character of DFT that should make it, in principle, system independent, we deliberately introduce system dependence to be able to assign a stochastically meaningful error to the system-dependent parametrization, which makes it nonarbitrary. By reparameterizing a functional that was derived on a sound physical basis to a chemical system of interest, we obtain a functional that yields reliable confidence intervals for reaction energies. We demonstrate our approach on the example of catalytic nitrogen fixation.
doi_str_mv 10.1021/acs.jctc.6b00318
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825527157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1797251420</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-45868e96928388be5f7fa625cf3dc072b0f13963b6ad7e6441650afb922300c53</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EoqWwM6GMDKT4Eb_YUBUeUiUkHrPluDakyqPYydB_j9OGbojJvlfn-6R7ALhEcI4gRrfahPnadGbOCggJEkdgimgmU8kwOz78kZiAsxDWESEZJqdggjmiEkI-BXdv29DZWnelSXLvW5_koSuHuW0SF8fFl61Lo6vk1Wqz2-aN9Z-lDefgxOkq2IvxnYGPh_x98ZQuXx6fF_fLVBMmuzSjggkrmcSCCFFY6rjTDFPjyMpAjgvoEJGMFEyvuGVZhhiF2hUSYwKhoWQGrve9G99-9zZ0qi6DsVWlG9v2QSGBKR0u4v-jXHJMUYZhROEeNb4NwVunNj7e7bcKQTXIVVGuGuSqUW6MXI3tfVHb1SHwazMCN3tgF21730Qvf_f9AP6Lg6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797251420</pqid></control><display><type>article</type><title>Systematic Error Estimation for Chemical Reaction Energies</title><source>American Chemical Society</source><creator>Simm, Gregor N ; Reiher, Markus</creator><creatorcontrib>Simm, Gregor N ; Reiher, Markus</creatorcontrib><description>For a theoretical understanding of the reactivity of complex chemical systems, accurate relative energies between intermediates and transition states are required. Despite its popularity, density functional theory (DFT) often fails to provide sufficiently accurate data, especially for molecules containing transition metals. Due to the huge number of intermediates that need to be studied for all but the simplest chemical processes, DFT is, to date, the only method that is computationally feasible. Here, we present a Bayesian framework for DFT that allows for error estimation of calculated properties. Since the optimal choice of parameters in present-day density functionals is strongly system dependent, we advocate for a system-focused reparameterization. While, at first sight, this approach conflicts with the first-principles character of DFT that should make it, in principle, system independent, we deliberately introduce system dependence to be able to assign a stochastically meaningful error to the system-dependent parametrization, which makes it nonarbitrary. By reparameterizing a functional that was derived on a sound physical basis to a chemical system of interest, we obtain a functional that yields reliable confidence intervals for reaction energies. We demonstrate our approach on the example of catalytic nitrogen fixation.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.6b00318</identifier><identifier>PMID: 27159007</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysts ; Chemical reactions ; Computation ; Confidence intervals ; Error analysis ; Mathematical analysis ; Parametrization ; Randomness</subject><ispartof>Journal of chemical theory and computation, 2016-06, Vol.12 (6), p.2762-2773</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-45868e96928388be5f7fa625cf3dc072b0f13963b6ad7e6441650afb922300c53</citedby><cites>FETCH-LOGICAL-a369t-45868e96928388be5f7fa625cf3dc072b0f13963b6ad7e6441650afb922300c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.6b00318$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.6b00318$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27159007$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simm, Gregor N</creatorcontrib><creatorcontrib>Reiher, Markus</creatorcontrib><title>Systematic Error Estimation for Chemical Reaction Energies</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>For a theoretical understanding of the reactivity of complex chemical systems, accurate relative energies between intermediates and transition states are required. Despite its popularity, density functional theory (DFT) often fails to provide sufficiently accurate data, especially for molecules containing transition metals. Due to the huge number of intermediates that need to be studied for all but the simplest chemical processes, DFT is, to date, the only method that is computationally feasible. Here, we present a Bayesian framework for DFT that allows for error estimation of calculated properties. Since the optimal choice of parameters in present-day density functionals is strongly system dependent, we advocate for a system-focused reparameterization. While, at first sight, this approach conflicts with the first-principles character of DFT that should make it, in principle, system independent, we deliberately introduce system dependence to be able to assign a stochastically meaningful error to the system-dependent parametrization, which makes it nonarbitrary. By reparameterizing a functional that was derived on a sound physical basis to a chemical system of interest, we obtain a functional that yields reliable confidence intervals for reaction energies. We demonstrate our approach on the example of catalytic nitrogen fixation.</description><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Computation</subject><subject>Confidence intervals</subject><subject>Error analysis</subject><subject>Mathematical analysis</subject><subject>Parametrization</subject><subject>Randomness</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAURi0EoqWwM6GMDKT4Eb_YUBUeUiUkHrPluDakyqPYydB_j9OGbojJvlfn-6R7ALhEcI4gRrfahPnadGbOCggJEkdgimgmU8kwOz78kZiAsxDWESEZJqdggjmiEkI-BXdv29DZWnelSXLvW5_koSuHuW0SF8fFl61Lo6vk1Wqz2-aN9Z-lDefgxOkq2IvxnYGPh_x98ZQuXx6fF_fLVBMmuzSjggkrmcSCCFFY6rjTDFPjyMpAjgvoEJGMFEyvuGVZhhiF2hUSYwKhoWQGrve9G99-9zZ0qi6DsVWlG9v2QSGBKR0u4v-jXHJMUYZhROEeNb4NwVunNj7e7bcKQTXIVVGuGuSqUW6MXI3tfVHb1SHwazMCN3tgF21730Qvf_f9AP6Lg6s</recordid><startdate>20160614</startdate><enddate>20160614</enddate><creator>Simm, Gregor N</creator><creator>Reiher, Markus</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160614</creationdate><title>Systematic Error Estimation for Chemical Reaction Energies</title><author>Simm, Gregor N ; Reiher, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-45868e96928388be5f7fa625cf3dc072b0f13963b6ad7e6441650afb922300c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Computation</topic><topic>Confidence intervals</topic><topic>Error analysis</topic><topic>Mathematical analysis</topic><topic>Parametrization</topic><topic>Randomness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simm, Gregor N</creatorcontrib><creatorcontrib>Reiher, Markus</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simm, Gregor N</au><au>Reiher, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Error Estimation for Chemical Reaction Energies</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2016-06-14</date><risdate>2016</risdate><volume>12</volume><issue>6</issue><spage>2762</spage><epage>2773</epage><pages>2762-2773</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>For a theoretical understanding of the reactivity of complex chemical systems, accurate relative energies between intermediates and transition states are required. Despite its popularity, density functional theory (DFT) often fails to provide sufficiently accurate data, especially for molecules containing transition metals. Due to the huge number of intermediates that need to be studied for all but the simplest chemical processes, DFT is, to date, the only method that is computationally feasible. Here, we present a Bayesian framework for DFT that allows for error estimation of calculated properties. Since the optimal choice of parameters in present-day density functionals is strongly system dependent, we advocate for a system-focused reparameterization. While, at first sight, this approach conflicts with the first-principles character of DFT that should make it, in principle, system independent, we deliberately introduce system dependence to be able to assign a stochastically meaningful error to the system-dependent parametrization, which makes it nonarbitrary. By reparameterizing a functional that was derived on a sound physical basis to a chemical system of interest, we obtain a functional that yields reliable confidence intervals for reaction energies. We demonstrate our approach on the example of catalytic nitrogen fixation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27159007</pmid><doi>10.1021/acs.jctc.6b00318</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2016-06, Vol.12 (6), p.2762-2773
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_1825527157
source American Chemical Society
subjects Catalysts
Chemical reactions
Computation
Confidence intervals
Error analysis
Mathematical analysis
Parametrization
Randomness
title Systematic Error Estimation for Chemical Reaction Energies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A07%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Error%20Estimation%20for%20Chemical%20Reaction%20Energies&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Simm,%20Gregor%20N&rft.date=2016-06-14&rft.volume=12&rft.issue=6&rft.spage=2762&rft.epage=2773&rft.pages=2762-2773&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.6b00318&rft_dat=%3Cproquest_cross%3E1797251420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1797251420&rft_id=info:pmid/27159007&rfr_iscdi=true