Multistage Countercurrent Crystallization for the Separation of Solid Solutions

While one crystallization step can be sufficient to provide pure components in case of eutectic systems, multistage operation is required to resolve solid solutions. A recently published equilibrium stage model was adopted here and generalized to simplify the description of the corresponding solid‐l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering & technology 2016-07, Vol.39 (7), p.1242-1250
Hauptverfasser: Münzberg, Stephan, Lorenz, Heike, Seidel-Morgenstern, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1250
container_issue 7
container_start_page 1242
container_title Chemical engineering & technology
container_volume 39
creator Münzberg, Stephan
Lorenz, Heike
Seidel-Morgenstern, Andreas
description While one crystallization step can be sufficient to provide pure components in case of eutectic systems, multistage operation is required to resolve solid solutions. A recently published equilibrium stage model was adopted here and generalized to simplify the description of the corresponding solid‐liquid equilibrium (SLE). The equilibria of the system potassium sulfate/ammonium sulfate/water were studied at different temperatures. The existence of a controversially discussed miscibility gap below 25 °C could not be confirmed. Using the equilibrium stage model and the studied specific SLE data, process variants considering different evaporation strategies were simulated. The influence of supersaturation by evaporation on a countercurrent crystallization cascade separating the system K2SO4/(NH4)2SO4/H2O was studied by simulation. While cascade‐wide constant evaporation factors tend to generate low‐efficient separation stages, stage‐independent evaporation was found to be very promising for improved process design.
doi_str_mv 10.1002/ceat.201600093
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825525424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825525424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4373-caee0e6e31c2fa3a2985fad4a1bf36b399b4ab1fb97537280cfb6acb448e69e33</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMmdkSfFHnI-xCm1BlFaoRUhdLMc9Q8Cti50Iyq8nUVDFxnKne_Q-N7wIXRI8IBjTawWyGlBMYoxxxo5Qj3BKwohQfox6DcFhwkl8is68f2sipDl6aP5Qm6r0lXyBILf1tgKnaudgWwW52zfcmPJbVqXdBtq6oHqFYAE76TpkdbCwply3s26JP0cnWhoPF7-7j57Go2V-G07nk7t8OA1VxBIWKgmAIQZGFNWSSZqlXMt1JEmhWVywLCsiWRBdZAlnCU2x0kUsVRFFKcQZMNZHV93fnbMfNfhKbEqvwBi5BVt7QVLKOeURjZrooIsqZ713oMXOlRvp9oJg0TYn2ubEoblGyDrhszSw_yct8tFw-dcNO7fpFL4OrnTvIk5YwsXzbCKWq9kqHT_eiHv2A5N6g7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825525424</pqid></control><display><type>article</type><title>Multistage Countercurrent Crystallization for the Separation of Solid Solutions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Münzberg, Stephan ; Lorenz, Heike ; Seidel-Morgenstern, Andreas</creator><creatorcontrib>Münzberg, Stephan ; Lorenz, Heike ; Seidel-Morgenstern, Andreas</creatorcontrib><description>While one crystallization step can be sufficient to provide pure components in case of eutectic systems, multistage operation is required to resolve solid solutions. A recently published equilibrium stage model was adopted here and generalized to simplify the description of the corresponding solid‐liquid equilibrium (SLE). The equilibria of the system potassium sulfate/ammonium sulfate/water were studied at different temperatures. The existence of a controversially discussed miscibility gap below 25 °C could not be confirmed. Using the equilibrium stage model and the studied specific SLE data, process variants considering different evaporation strategies were simulated. The influence of supersaturation by evaporation on a countercurrent crystallization cascade separating the system K2SO4/(NH4)2SO4/H2O was studied by simulation. While cascade‐wide constant evaporation factors tend to generate low‐efficient separation stages, stage‐independent evaporation was found to be very promising for improved process design.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.201600093</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Cascades ; Computer simulation ; Countercurrent crystallization ; Crystallization ; Evaporation ; Fractional crystallization ; Mathematical models ; Multistage ; Phase equilibria ; Process modeling ; Separation ; Solid solution ; Solid solutions</subject><ispartof>Chemical engineering &amp; technology, 2016-07, Vol.39 (7), p.1242-1250</ispartof><rights>Copyright © 2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4373-caee0e6e31c2fa3a2985fad4a1bf36b399b4ab1fb97537280cfb6acb448e69e33</citedby><cites>FETCH-LOGICAL-c4373-caee0e6e31c2fa3a2985fad4a1bf36b399b4ab1fb97537280cfb6acb448e69e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fceat.201600093$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fceat.201600093$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Münzberg, Stephan</creatorcontrib><creatorcontrib>Lorenz, Heike</creatorcontrib><creatorcontrib>Seidel-Morgenstern, Andreas</creatorcontrib><title>Multistage Countercurrent Crystallization for the Separation of Solid Solutions</title><title>Chemical engineering &amp; technology</title><addtitle>Chem. Eng. Technol</addtitle><description>While one crystallization step can be sufficient to provide pure components in case of eutectic systems, multistage operation is required to resolve solid solutions. A recently published equilibrium stage model was adopted here and generalized to simplify the description of the corresponding solid‐liquid equilibrium (SLE). The equilibria of the system potassium sulfate/ammonium sulfate/water were studied at different temperatures. The existence of a controversially discussed miscibility gap below 25 °C could not be confirmed. Using the equilibrium stage model and the studied specific SLE data, process variants considering different evaporation strategies were simulated. The influence of supersaturation by evaporation on a countercurrent crystallization cascade separating the system K2SO4/(NH4)2SO4/H2O was studied by simulation. While cascade‐wide constant evaporation factors tend to generate low‐efficient separation stages, stage‐independent evaporation was found to be very promising for improved process design.</description><subject>Cascades</subject><subject>Computer simulation</subject><subject>Countercurrent crystallization</subject><subject>Crystallization</subject><subject>Evaporation</subject><subject>Fractional crystallization</subject><subject>Mathematical models</subject><subject>Multistage</subject><subject>Phase equilibria</subject><subject>Process modeling</subject><subject>Separation</subject><subject>Solid solution</subject><subject>Solid solutions</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqWwMmdkSfFHnI-xCm1BlFaoRUhdLMc9Q8Cti50Iyq8nUVDFxnKne_Q-N7wIXRI8IBjTawWyGlBMYoxxxo5Qj3BKwohQfox6DcFhwkl8is68f2sipDl6aP5Qm6r0lXyBILf1tgKnaudgWwW52zfcmPJbVqXdBtq6oHqFYAE76TpkdbCwply3s26JP0cnWhoPF7-7j57Go2V-G07nk7t8OA1VxBIWKgmAIQZGFNWSSZqlXMt1JEmhWVywLCsiWRBdZAlnCU2x0kUsVRFFKcQZMNZHV93fnbMfNfhKbEqvwBi5BVt7QVLKOeURjZrooIsqZ713oMXOlRvp9oJg0TYn2ubEoblGyDrhszSw_yct8tFw-dcNO7fpFL4OrnTvIk5YwsXzbCKWq9kqHT_eiHv2A5N6g7o</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Münzberg, Stephan</creator><creator>Lorenz, Heike</creator><creator>Seidel-Morgenstern, Andreas</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201607</creationdate><title>Multistage Countercurrent Crystallization for the Separation of Solid Solutions</title><author>Münzberg, Stephan ; Lorenz, Heike ; Seidel-Morgenstern, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4373-caee0e6e31c2fa3a2985fad4a1bf36b399b4ab1fb97537280cfb6acb448e69e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cascades</topic><topic>Computer simulation</topic><topic>Countercurrent crystallization</topic><topic>Crystallization</topic><topic>Evaporation</topic><topic>Fractional crystallization</topic><topic>Mathematical models</topic><topic>Multistage</topic><topic>Phase equilibria</topic><topic>Process modeling</topic><topic>Separation</topic><topic>Solid solution</topic><topic>Solid solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Münzberg, Stephan</creatorcontrib><creatorcontrib>Lorenz, Heike</creatorcontrib><creatorcontrib>Seidel-Morgenstern, Andreas</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Münzberg, Stephan</au><au>Lorenz, Heike</au><au>Seidel-Morgenstern, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multistage Countercurrent Crystallization for the Separation of Solid Solutions</atitle><jtitle>Chemical engineering &amp; technology</jtitle><addtitle>Chem. Eng. Technol</addtitle><date>2016-07</date><risdate>2016</risdate><volume>39</volume><issue>7</issue><spage>1242</spage><epage>1250</epage><pages>1242-1250</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><abstract>While one crystallization step can be sufficient to provide pure components in case of eutectic systems, multistage operation is required to resolve solid solutions. A recently published equilibrium stage model was adopted here and generalized to simplify the description of the corresponding solid‐liquid equilibrium (SLE). The equilibria of the system potassium sulfate/ammonium sulfate/water were studied at different temperatures. The existence of a controversially discussed miscibility gap below 25 °C could not be confirmed. Using the equilibrium stage model and the studied specific SLE data, process variants considering different evaporation strategies were simulated. The influence of supersaturation by evaporation on a countercurrent crystallization cascade separating the system K2SO4/(NH4)2SO4/H2O was studied by simulation. While cascade‐wide constant evaporation factors tend to generate low‐efficient separation stages, stage‐independent evaporation was found to be very promising for improved process design.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ceat.201600093</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0930-7516
ispartof Chemical engineering & technology, 2016-07, Vol.39 (7), p.1242-1250
issn 0930-7516
1521-4125
language eng
recordid cdi_proquest_miscellaneous_1825525424
source Wiley Online Library Journals Frontfile Complete
subjects Cascades
Computer simulation
Countercurrent crystallization
Crystallization
Evaporation
Fractional crystallization
Mathematical models
Multistage
Phase equilibria
Process modeling
Separation
Solid solution
Solid solutions
title Multistage Countercurrent Crystallization for the Separation of Solid Solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multistage%20Countercurrent%20Crystallization%20for%20the%20Separation%20of%20Solid%20Solutions&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=M%C3%BCnzberg,%20Stephan&rft.date=2016-07&rft.volume=39&rft.issue=7&rft.spage=1242&rft.epage=1250&rft.pages=1242-1250&rft.issn=0930-7516&rft.eissn=1521-4125&rft_id=info:doi/10.1002/ceat.201600093&rft_dat=%3Cproquest_cross%3E1825525424%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825525424&rft_id=info:pmid/&rfr_iscdi=true