Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam

In this work we propose an application of a nonlinear dimensionality reduction method to represent the high-dimensional configuration space of the ligand–protein dissociation process in a manner facilitating interpretation. Rugged ligand expulsion paths are mapped into 2-dimensional space. The mappi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2016-04, Vol.12 (4), p.2110-2120
Hauptverfasser: Rydzewski, J, Nowak, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2120
container_issue 4
container_start_page 2110
container_title Journal of chemical theory and computation
container_volume 12
creator Rydzewski, J
Nowak, W
description In this work we propose an application of a nonlinear dimensionality reduction method to represent the high-dimensional configuration space of the ligand–protein dissociation process in a manner facilitating interpretation. Rugged ligand expulsion paths are mapped into 2-dimensional space. The mapping retains the main structural changes occurring during the dissociation. The topological similarity of the reduced paths may be easily studied using the Fréchet distances, and we show that this measure facilitates machine learning classification of the diffusion pathways. Further, low-dimensional configuration space allows for identification of residues active in transport during the ligand diffusion from a protein. The utility of this approach is illustrated by examination of the configuration space of cytochrome P450cam involved in expulsing camphor by means of enhanced all-atom molecular dynamics simulations. The expulsion trajectories are sampled and constructed on-the-fly during molecular dynamics simulations using the recently developed memetic algorithms [Rydzewski, J.; Nowak, W. J. Chem. Phys. 2015, 143 (12), 124101 ]. We show that the memetic algorithms are effective for enforcing the ligand diffusion and cavity exploration in the P450cam–camphor complex. Furthermore, we demonstrate that machine learning techniques are helpful in inspecting ligand diffusion landscapes and provide useful tools to examine structural changes accompanying rare events.
doi_str_mv 10.1021/acs.jctc.6b00212
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825525242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1780810489</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-96843bfeeb33561bfb2b0f1a078433a672d48fb8fb965b14aa5b8cc5f1b773ca3</originalsourceid><addsrcrecordid>eNqFkc1rGzEQxUVJaJy0956CjjnUrj5Wu1JujhsnBYea0p6XkSzFCt5dd0d7MPnnI8dubiUwoJnh9x5oHiFfOJtwJvg3cDh5cslNSsvyLD6QEVeFGZtSlCdvPddn5BzxiTEpCyE_kjNRGm2MqUbk-QHcOraeLjz0bWwf6Q2gX9HvsfEtxq6FTUw7-suvBpfySOfgYl5B8kgX8RHaPRvCsGfpEtIa6RTRI2Z9uqZTOst-tAt0tkudW_dd4-myUMxB84mcBtig_3x8L8if-e3v2f148fPux2y6GIMsTcof0IW0wXsrpSq5DVZYFjiwKu8llJVYFTrYXKZUlhcAymrnVOC2qqQDeUGuDr7bvvs7eEx1E9H5zQZa3w1Ycy2UEkrk27yLVpppzgptMsoOqOs7xN6HetvHBvpdzVm9T6fO6dT7dOpjOllyeXQfbONXb4J_cWTg6wF4lXZDn8-P__d7AXGBm_0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1780810489</pqid></control><display><type>article</type><title>Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam</title><source>ACS Publications</source><source>MEDLINE</source><creator>Rydzewski, J ; Nowak, W</creator><creatorcontrib>Rydzewski, J ; Nowak, W</creatorcontrib><description>In this work we propose an application of a nonlinear dimensionality reduction method to represent the high-dimensional configuration space of the ligand–protein dissociation process in a manner facilitating interpretation. Rugged ligand expulsion paths are mapped into 2-dimensional space. The mapping retains the main structural changes occurring during the dissociation. The topological similarity of the reduced paths may be easily studied using the Fréchet distances, and we show that this measure facilitates machine learning classification of the diffusion pathways. Further, low-dimensional configuration space allows for identification of residues active in transport during the ligand diffusion from a protein. The utility of this approach is illustrated by examination of the configuration space of cytochrome P450cam involved in expulsing camphor by means of enhanced all-atom molecular dynamics simulations. The expulsion trajectories are sampled and constructed on-the-fly during molecular dynamics simulations using the recently developed memetic algorithms [Rydzewski, J.; Nowak, W. J. Chem. Phys. 2015, 143 (12), 124101 ]. We show that the memetic algorithms are effective for enforcing the ligand diffusion and cavity exploration in the P450cam–camphor complex. Furthermore, we demonstrate that machine learning techniques are helpful in inspecting ligand diffusion landscapes and provide useful tools to examine structural changes accompanying rare events.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.6b00212</identifier><identifier>PMID: 26989997</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Camphor - chemistry ; Camphor - metabolism ; Camphor 5-Monooxygenase - chemistry ; Camphor 5-Monooxygenase - metabolism ; Computer simulation ; Diffusion ; Expulsion ; Ligands ; Machine Learning ; Molecular Docking Simulation ; Molecular dynamics ; Molecular Dynamics Simulation ; Protein Conformation ; Pseudomonas Infections - microbiology ; Pseudomonas putida - chemistry ; Pseudomonas putida - enzymology ; Pseudomonas putida - metabolism ; Reduction</subject><ispartof>Journal of chemical theory and computation, 2016-04, Vol.12 (4), p.2110-2120</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-96843bfeeb33561bfb2b0f1a078433a672d48fb8fb965b14aa5b8cc5f1b773ca3</citedby><cites>FETCH-LOGICAL-a369t-96843bfeeb33561bfb2b0f1a078433a672d48fb8fb965b14aa5b8cc5f1b773ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.6b00212$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.6b00212$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26989997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rydzewski, J</creatorcontrib><creatorcontrib>Nowak, W</creatorcontrib><title>Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>In this work we propose an application of a nonlinear dimensionality reduction method to represent the high-dimensional configuration space of the ligand–protein dissociation process in a manner facilitating interpretation. Rugged ligand expulsion paths are mapped into 2-dimensional space. The mapping retains the main structural changes occurring during the dissociation. The topological similarity of the reduced paths may be easily studied using the Fréchet distances, and we show that this measure facilitates machine learning classification of the diffusion pathways. Further, low-dimensional configuration space allows for identification of residues active in transport during the ligand diffusion from a protein. The utility of this approach is illustrated by examination of the configuration space of cytochrome P450cam involved in expulsing camphor by means of enhanced all-atom molecular dynamics simulations. The expulsion trajectories are sampled and constructed on-the-fly during molecular dynamics simulations using the recently developed memetic algorithms [Rydzewski, J.; Nowak, W. J. Chem. Phys. 2015, 143 (12), 124101 ]. We show that the memetic algorithms are effective for enforcing the ligand diffusion and cavity exploration in the P450cam–camphor complex. Furthermore, we demonstrate that machine learning techniques are helpful in inspecting ligand diffusion landscapes and provide useful tools to examine structural changes accompanying rare events.</description><subject>Algorithms</subject><subject>Camphor - chemistry</subject><subject>Camphor - metabolism</subject><subject>Camphor 5-Monooxygenase - chemistry</subject><subject>Camphor 5-Monooxygenase - metabolism</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Expulsion</subject><subject>Ligands</subject><subject>Machine Learning</subject><subject>Molecular Docking Simulation</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Protein Conformation</subject><subject>Pseudomonas Infections - microbiology</subject><subject>Pseudomonas putida - chemistry</subject><subject>Pseudomonas putida - enzymology</subject><subject>Pseudomonas putida - metabolism</subject><subject>Reduction</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1rGzEQxUVJaJy0956CjjnUrj5Wu1JujhsnBYea0p6XkSzFCt5dd0d7MPnnI8dubiUwoJnh9x5oHiFfOJtwJvg3cDh5cslNSsvyLD6QEVeFGZtSlCdvPddn5BzxiTEpCyE_kjNRGm2MqUbk-QHcOraeLjz0bWwf6Q2gX9HvsfEtxq6FTUw7-suvBpfySOfgYl5B8kgX8RHaPRvCsGfpEtIa6RTRI2Z9uqZTOst-tAt0tkudW_dd4-myUMxB84mcBtig_3x8L8if-e3v2f148fPux2y6GIMsTcof0IW0wXsrpSq5DVZYFjiwKu8llJVYFTrYXKZUlhcAymrnVOC2qqQDeUGuDr7bvvs7eEx1E9H5zQZa3w1Ycy2UEkrk27yLVpppzgptMsoOqOs7xN6HetvHBvpdzVm9T6fO6dT7dOpjOllyeXQfbONXb4J_cWTg6wF4lXZDn8-P__d7AXGBm_0</recordid><startdate>20160412</startdate><enddate>20160412</enddate><creator>Rydzewski, J</creator><creator>Nowak, W</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160412</creationdate><title>Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam</title><author>Rydzewski, J ; Nowak, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-96843bfeeb33561bfb2b0f1a078433a672d48fb8fb965b14aa5b8cc5f1b773ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Camphor - chemistry</topic><topic>Camphor - metabolism</topic><topic>Camphor 5-Monooxygenase - chemistry</topic><topic>Camphor 5-Monooxygenase - metabolism</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Expulsion</topic><topic>Ligands</topic><topic>Machine Learning</topic><topic>Molecular Docking Simulation</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Protein Conformation</topic><topic>Pseudomonas Infections - microbiology</topic><topic>Pseudomonas putida - chemistry</topic><topic>Pseudomonas putida - enzymology</topic><topic>Pseudomonas putida - metabolism</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rydzewski, J</creatorcontrib><creatorcontrib>Nowak, W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rydzewski, J</au><au>Nowak, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2016-04-12</date><risdate>2016</risdate><volume>12</volume><issue>4</issue><spage>2110</spage><epage>2120</epage><pages>2110-2120</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>In this work we propose an application of a nonlinear dimensionality reduction method to represent the high-dimensional configuration space of the ligand–protein dissociation process in a manner facilitating interpretation. Rugged ligand expulsion paths are mapped into 2-dimensional space. The mapping retains the main structural changes occurring during the dissociation. The topological similarity of the reduced paths may be easily studied using the Fréchet distances, and we show that this measure facilitates machine learning classification of the diffusion pathways. Further, low-dimensional configuration space allows for identification of residues active in transport during the ligand diffusion from a protein. The utility of this approach is illustrated by examination of the configuration space of cytochrome P450cam involved in expulsing camphor by means of enhanced all-atom molecular dynamics simulations. The expulsion trajectories are sampled and constructed on-the-fly during molecular dynamics simulations using the recently developed memetic algorithms [Rydzewski, J.; Nowak, W. J. Chem. Phys. 2015, 143 (12), 124101 ]. We show that the memetic algorithms are effective for enforcing the ligand diffusion and cavity exploration in the P450cam–camphor complex. Furthermore, we demonstrate that machine learning techniques are helpful in inspecting ligand diffusion landscapes and provide useful tools to examine structural changes accompanying rare events.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26989997</pmid><doi>10.1021/acs.jctc.6b00212</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2016-04, Vol.12 (4), p.2110-2120
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_1825525242
source ACS Publications; MEDLINE
subjects Algorithms
Camphor - chemistry
Camphor - metabolism
Camphor 5-Monooxygenase - chemistry
Camphor 5-Monooxygenase - metabolism
Computer simulation
Diffusion
Expulsion
Ligands
Machine Learning
Molecular Docking Simulation
Molecular dynamics
Molecular Dynamics Simulation
Protein Conformation
Pseudomonas Infections - microbiology
Pseudomonas putida - chemistry
Pseudomonas putida - enzymology
Pseudomonas putida - metabolism
Reduction
title Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Based%20Dimensionality%20Reduction%20Facilitates%20Ligand%20Diffusion%20Paths%20Assessment:%20A%20Case%20of%20Cytochrome%20P450cam&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Rydzewski,%20J&rft.date=2016-04-12&rft.volume=12&rft.issue=4&rft.spage=2110&rft.epage=2120&rft.pages=2110-2120&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.6b00212&rft_dat=%3Cproquest_cross%3E1780810489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1780810489&rft_id=info:pmid/26989997&rfr_iscdi=true