Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam
In this work we propose an application of a nonlinear dimensionality reduction method to represent the high-dimensional configuration space of the ligand–protein dissociation process in a manner facilitating interpretation. Rugged ligand expulsion paths are mapped into 2-dimensional space. The mappi...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2016-04, Vol.12 (4), p.2110-2120 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2120 |
---|---|
container_issue | 4 |
container_start_page | 2110 |
container_title | Journal of chemical theory and computation |
container_volume | 12 |
creator | Rydzewski, J Nowak, W |
description | In this work we propose an application of a nonlinear dimensionality reduction method to represent the high-dimensional configuration space of the ligand–protein dissociation process in a manner facilitating interpretation. Rugged ligand expulsion paths are mapped into 2-dimensional space. The mapping retains the main structural changes occurring during the dissociation. The topological similarity of the reduced paths may be easily studied using the Fréchet distances, and we show that this measure facilitates machine learning classification of the diffusion pathways. Further, low-dimensional configuration space allows for identification of residues active in transport during the ligand diffusion from a protein. The utility of this approach is illustrated by examination of the configuration space of cytochrome P450cam involved in expulsing camphor by means of enhanced all-atom molecular dynamics simulations. The expulsion trajectories are sampled and constructed on-the-fly during molecular dynamics simulations using the recently developed memetic algorithms [Rydzewski, J.; Nowak, W. J. Chem. Phys. 2015, 143 (12), 124101 ]. We show that the memetic algorithms are effective for enforcing the ligand diffusion and cavity exploration in the P450cam–camphor complex. Furthermore, we demonstrate that machine learning techniques are helpful in inspecting ligand diffusion landscapes and provide useful tools to examine structural changes accompanying rare events. |
doi_str_mv | 10.1021/acs.jctc.6b00212 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825525242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1780810489</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-96843bfeeb33561bfb2b0f1a078433a672d48fb8fb965b14aa5b8cc5f1b773ca3</originalsourceid><addsrcrecordid>eNqFkc1rGzEQxUVJaJy0956CjjnUrj5Wu1JujhsnBYea0p6XkSzFCt5dd0d7MPnnI8dubiUwoJnh9x5oHiFfOJtwJvg3cDh5cslNSsvyLD6QEVeFGZtSlCdvPddn5BzxiTEpCyE_kjNRGm2MqUbk-QHcOraeLjz0bWwf6Q2gX9HvsfEtxq6FTUw7-suvBpfySOfgYl5B8kgX8RHaPRvCsGfpEtIa6RTRI2Z9uqZTOst-tAt0tkudW_dd4-myUMxB84mcBtig_3x8L8if-e3v2f148fPux2y6GIMsTcof0IW0wXsrpSq5DVZYFjiwKu8llJVYFTrYXKZUlhcAymrnVOC2qqQDeUGuDr7bvvs7eEx1E9H5zQZa3w1Ycy2UEkrk27yLVpppzgptMsoOqOs7xN6HetvHBvpdzVm9T6fO6dT7dOpjOllyeXQfbONXb4J_cWTg6wF4lXZDn8-P__d7AXGBm_0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1780810489</pqid></control><display><type>article</type><title>Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam</title><source>ACS Publications</source><source>MEDLINE</source><creator>Rydzewski, J ; Nowak, W</creator><creatorcontrib>Rydzewski, J ; Nowak, W</creatorcontrib><description>In this work we propose an application of a nonlinear dimensionality reduction method to represent the high-dimensional configuration space of the ligand–protein dissociation process in a manner facilitating interpretation. Rugged ligand expulsion paths are mapped into 2-dimensional space. The mapping retains the main structural changes occurring during the dissociation. The topological similarity of the reduced paths may be easily studied using the Fréchet distances, and we show that this measure facilitates machine learning classification of the diffusion pathways. Further, low-dimensional configuration space allows for identification of residues active in transport during the ligand diffusion from a protein. The utility of this approach is illustrated by examination of the configuration space of cytochrome P450cam involved in expulsing camphor by means of enhanced all-atom molecular dynamics simulations. The expulsion trajectories are sampled and constructed on-the-fly during molecular dynamics simulations using the recently developed memetic algorithms [Rydzewski, J.; Nowak, W. J. Chem. Phys. 2015, 143 (12), 124101 ]. We show that the memetic algorithms are effective for enforcing the ligand diffusion and cavity exploration in the P450cam–camphor complex. Furthermore, we demonstrate that machine learning techniques are helpful in inspecting ligand diffusion landscapes and provide useful tools to examine structural changes accompanying rare events.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.6b00212</identifier><identifier>PMID: 26989997</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Camphor - chemistry ; Camphor - metabolism ; Camphor 5-Monooxygenase - chemistry ; Camphor 5-Monooxygenase - metabolism ; Computer simulation ; Diffusion ; Expulsion ; Ligands ; Machine Learning ; Molecular Docking Simulation ; Molecular dynamics ; Molecular Dynamics Simulation ; Protein Conformation ; Pseudomonas Infections - microbiology ; Pseudomonas putida - chemistry ; Pseudomonas putida - enzymology ; Pseudomonas putida - metabolism ; Reduction</subject><ispartof>Journal of chemical theory and computation, 2016-04, Vol.12 (4), p.2110-2120</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-96843bfeeb33561bfb2b0f1a078433a672d48fb8fb965b14aa5b8cc5f1b773ca3</citedby><cites>FETCH-LOGICAL-a369t-96843bfeeb33561bfb2b0f1a078433a672d48fb8fb965b14aa5b8cc5f1b773ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.6b00212$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.6b00212$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26989997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rydzewski, J</creatorcontrib><creatorcontrib>Nowak, W</creatorcontrib><title>Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>In this work we propose an application of a nonlinear dimensionality reduction method to represent the high-dimensional configuration space of the ligand–protein dissociation process in a manner facilitating interpretation. Rugged ligand expulsion paths are mapped into 2-dimensional space. The mapping retains the main structural changes occurring during the dissociation. The topological similarity of the reduced paths may be easily studied using the Fréchet distances, and we show that this measure facilitates machine learning classification of the diffusion pathways. Further, low-dimensional configuration space allows for identification of residues active in transport during the ligand diffusion from a protein. The utility of this approach is illustrated by examination of the configuration space of cytochrome P450cam involved in expulsing camphor by means of enhanced all-atom molecular dynamics simulations. The expulsion trajectories are sampled and constructed on-the-fly during molecular dynamics simulations using the recently developed memetic algorithms [Rydzewski, J.; Nowak, W. J. Chem. Phys. 2015, 143 (12), 124101 ]. We show that the memetic algorithms are effective for enforcing the ligand diffusion and cavity exploration in the P450cam–camphor complex. Furthermore, we demonstrate that machine learning techniques are helpful in inspecting ligand diffusion landscapes and provide useful tools to examine structural changes accompanying rare events.</description><subject>Algorithms</subject><subject>Camphor - chemistry</subject><subject>Camphor - metabolism</subject><subject>Camphor 5-Monooxygenase - chemistry</subject><subject>Camphor 5-Monooxygenase - metabolism</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Expulsion</subject><subject>Ligands</subject><subject>Machine Learning</subject><subject>Molecular Docking Simulation</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Protein Conformation</subject><subject>Pseudomonas Infections - microbiology</subject><subject>Pseudomonas putida - chemistry</subject><subject>Pseudomonas putida - enzymology</subject><subject>Pseudomonas putida - metabolism</subject><subject>Reduction</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1rGzEQxUVJaJy0956CjjnUrj5Wu1JujhsnBYea0p6XkSzFCt5dd0d7MPnnI8dubiUwoJnh9x5oHiFfOJtwJvg3cDh5cslNSsvyLD6QEVeFGZtSlCdvPddn5BzxiTEpCyE_kjNRGm2MqUbk-QHcOraeLjz0bWwf6Q2gX9HvsfEtxq6FTUw7-suvBpfySOfgYl5B8kgX8RHaPRvCsGfpEtIa6RTRI2Z9uqZTOst-tAt0tkudW_dd4-myUMxB84mcBtig_3x8L8if-e3v2f148fPux2y6GIMsTcof0IW0wXsrpSq5DVZYFjiwKu8llJVYFTrYXKZUlhcAymrnVOC2qqQDeUGuDr7bvvs7eEx1E9H5zQZa3w1Ycy2UEkrk27yLVpppzgptMsoOqOs7xN6HetvHBvpdzVm9T6fO6dT7dOpjOllyeXQfbONXb4J_cWTg6wF4lXZDn8-P__d7AXGBm_0</recordid><startdate>20160412</startdate><enddate>20160412</enddate><creator>Rydzewski, J</creator><creator>Nowak, W</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160412</creationdate><title>Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam</title><author>Rydzewski, J ; Nowak, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-96843bfeeb33561bfb2b0f1a078433a672d48fb8fb965b14aa5b8cc5f1b773ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Camphor - chemistry</topic><topic>Camphor - metabolism</topic><topic>Camphor 5-Monooxygenase - chemistry</topic><topic>Camphor 5-Monooxygenase - metabolism</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Expulsion</topic><topic>Ligands</topic><topic>Machine Learning</topic><topic>Molecular Docking Simulation</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Protein Conformation</topic><topic>Pseudomonas Infections - microbiology</topic><topic>Pseudomonas putida - chemistry</topic><topic>Pseudomonas putida - enzymology</topic><topic>Pseudomonas putida - metabolism</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rydzewski, J</creatorcontrib><creatorcontrib>Nowak, W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rydzewski, J</au><au>Nowak, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2016-04-12</date><risdate>2016</risdate><volume>12</volume><issue>4</issue><spage>2110</spage><epage>2120</epage><pages>2110-2120</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>In this work we propose an application of a nonlinear dimensionality reduction method to represent the high-dimensional configuration space of the ligand–protein dissociation process in a manner facilitating interpretation. Rugged ligand expulsion paths are mapped into 2-dimensional space. The mapping retains the main structural changes occurring during the dissociation. The topological similarity of the reduced paths may be easily studied using the Fréchet distances, and we show that this measure facilitates machine learning classification of the diffusion pathways. Further, low-dimensional configuration space allows for identification of residues active in transport during the ligand diffusion from a protein. The utility of this approach is illustrated by examination of the configuration space of cytochrome P450cam involved in expulsing camphor by means of enhanced all-atom molecular dynamics simulations. The expulsion trajectories are sampled and constructed on-the-fly during molecular dynamics simulations using the recently developed memetic algorithms [Rydzewski, J.; Nowak, W. J. Chem. Phys. 2015, 143 (12), 124101 ]. We show that the memetic algorithms are effective for enforcing the ligand diffusion and cavity exploration in the P450cam–camphor complex. Furthermore, we demonstrate that machine learning techniques are helpful in inspecting ligand diffusion landscapes and provide useful tools to examine structural changes accompanying rare events.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26989997</pmid><doi>10.1021/acs.jctc.6b00212</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2016-04, Vol.12 (4), p.2110-2120 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825525242 |
source | ACS Publications; MEDLINE |
subjects | Algorithms Camphor - chemistry Camphor - metabolism Camphor 5-Monooxygenase - chemistry Camphor 5-Monooxygenase - metabolism Computer simulation Diffusion Expulsion Ligands Machine Learning Molecular Docking Simulation Molecular dynamics Molecular Dynamics Simulation Protein Conformation Pseudomonas Infections - microbiology Pseudomonas putida - chemistry Pseudomonas putida - enzymology Pseudomonas putida - metabolism Reduction |
title | Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Based%20Dimensionality%20Reduction%20Facilitates%20Ligand%20Diffusion%20Paths%20Assessment:%20A%20Case%20of%20Cytochrome%20P450cam&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Rydzewski,%20J&rft.date=2016-04-12&rft.volume=12&rft.issue=4&rft.spage=2110&rft.epage=2120&rft.pages=2110-2120&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.6b00212&rft_dat=%3Cproquest_cross%3E1780810489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1780810489&rft_id=info:pmid/26989997&rfr_iscdi=true |