Polymer nanofilms with enhanced microporosity by interfacial polymerization

Highly permeable and selective membranes are desirable for energy-efficient gas and liquid separations. Microporous organic polymers have attracted significant attention in this respect owing to their high porosity, permeability and molecular selectivity. However, it remains challenging to fabricate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2016-07, Vol.15 (7), p.760-767
Hauptverfasser: Jimenez-Solomon, Maria F., Song, Qilei, Jelfs, Kim E., Munoz-Ibanez, Marta, Livingston, Andrew G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 767
container_issue 7
container_start_page 760
container_title Nature materials
container_volume 15
creator Jimenez-Solomon, Maria F.
Song, Qilei
Jelfs, Kim E.
Munoz-Ibanez, Marta
Livingston, Andrew G.
description Highly permeable and selective membranes are desirable for energy-efficient gas and liquid separations. Microporous organic polymers have attracted significant attention in this respect owing to their high porosity, permeability and molecular selectivity. However, it remains challenging to fabricate selective polymer membranes with controlled microporosity that are stable in solvents. Here we report a new approach to designing crosslinked, rigid polymer nanofilms with enhanced microporosity by manipulating the molecular structure. Ultrathin polyarylate nanofilms with thickness down to 20 nm are formed in situ by interfacial polymerization. Enhanced microporosity and higher interconnectivity of intermolecular network voids, as rationalized by molecular simulations, are achieved by using contorted monomers for the interfacial polymerization. Composite membranes comprising polyarylate nanofilms with enhanced microporosity fabricated in situ on crosslinked polyimide ultrafiltration membranes show outstanding separation performance in organic solvents, with up to two orders of magnitude higher solvent permeance than membranes fabricated with nanofilms made from non-contorted planar monomers. Here it is shown how ultrathin and microporous polymer membranes, fabricated using sterically contorted monomers, can achieve enhanced performance for solvent-based separations.
doi_str_mv 10.1038/nmat4638
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825521598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825521598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-3eaf185359244cf4453fc684aeee091d2f1b2df96fc31938860612a086f435723</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMo7roK_gIpeNFDNd9Nj7L4hYIe9FyyaeJmaZOatEj99Va6q7IXTzMwz7zD-w4AxwheIEjEpatlSzkRO2CKaMZTyjncXfcIYTwBBzGuIMSIMb4PJjhDhAmWTcHDs6_6WofESeeNreqYfNh2mWi3lE7pMqmtCr7xwUfb9smiT6xrdTBSWVklzbhsP2VrvTsEe0ZWUR-t6wy83ly_zO_Sx6fb-_nVY6oozduUaGmQYITlmFJlKGXEKC6o1FrDHJXYoAUuTc6NIignQnDIEZZQcEMJyzCZgbNRtwn-vdOxLWobla4q6bTvYoEEZmywmov_0SzPMSKU0gE93UJXvgtuMDJSWGBOfgWHVGIM2hRNsLUMfYFg8f2LYvOLAT1ZC3aLWpc_4Cb8ATgfgTiM3JsOfy5ui30BQFGRyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799228263</pqid></control><display><type>article</type><title>Polymer nanofilms with enhanced microporosity by interfacial polymerization</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Jimenez-Solomon, Maria F. ; Song, Qilei ; Jelfs, Kim E. ; Munoz-Ibanez, Marta ; Livingston, Andrew G.</creator><creatorcontrib>Jimenez-Solomon, Maria F. ; Song, Qilei ; Jelfs, Kim E. ; Munoz-Ibanez, Marta ; Livingston, Andrew G.</creatorcontrib><description>Highly permeable and selective membranes are desirable for energy-efficient gas and liquid separations. Microporous organic polymers have attracted significant attention in this respect owing to their high porosity, permeability and molecular selectivity. However, it remains challenging to fabricate selective polymer membranes with controlled microporosity that are stable in solvents. Here we report a new approach to designing crosslinked, rigid polymer nanofilms with enhanced microporosity by manipulating the molecular structure. Ultrathin polyarylate nanofilms with thickness down to 20 nm are formed in situ by interfacial polymerization. Enhanced microporosity and higher interconnectivity of intermolecular network voids, as rationalized by molecular simulations, are achieved by using contorted monomers for the interfacial polymerization. Composite membranes comprising polyarylate nanofilms with enhanced microporosity fabricated in situ on crosslinked polyimide ultrafiltration membranes show outstanding separation performance in organic solvents, with up to two orders of magnitude higher solvent permeance than membranes fabricated with nanofilms made from non-contorted planar monomers. Here it is shown how ultrathin and microporous polymer membranes, fabricated using sterically contorted monomers, can achieve enhanced performance for solvent-based separations.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4638</identifier><identifier>PMID: 27135857</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/301/299/1013 ; 639/638/298/923 ; 639/638/455/941 ; 639/638/563/981 ; 639/925/357/551 ; Biomaterials ; Condensed Matter Physics ; Crosslinking ; Energy efficiency ; Materials Science ; Membranes ; Microporosity ; Monomers ; Nanostructure ; Nanostructured materials ; Nanotechnology ; Optical and Electronic Materials ; Organic solvents ; Particulate composites ; Permeability ; Polymerization ; Polymers ; Porosity ; Solvents ; Ultrafiltration</subject><ispartof>Nature materials, 2016-07, Vol.15 (7), p.760-767</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Jul 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-3eaf185359244cf4453fc684aeee091d2f1b2df96fc31938860612a086f435723</citedby><cites>FETCH-LOGICAL-c449t-3eaf185359244cf4453fc684aeee091d2f1b2df96fc31938860612a086f435723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27135857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jimenez-Solomon, Maria F.</creatorcontrib><creatorcontrib>Song, Qilei</creatorcontrib><creatorcontrib>Jelfs, Kim E.</creatorcontrib><creatorcontrib>Munoz-Ibanez, Marta</creatorcontrib><creatorcontrib>Livingston, Andrew G.</creatorcontrib><title>Polymer nanofilms with enhanced microporosity by interfacial polymerization</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Highly permeable and selective membranes are desirable for energy-efficient gas and liquid separations. Microporous organic polymers have attracted significant attention in this respect owing to their high porosity, permeability and molecular selectivity. However, it remains challenging to fabricate selective polymer membranes with controlled microporosity that are stable in solvents. Here we report a new approach to designing crosslinked, rigid polymer nanofilms with enhanced microporosity by manipulating the molecular structure. Ultrathin polyarylate nanofilms with thickness down to 20 nm are formed in situ by interfacial polymerization. Enhanced microporosity and higher interconnectivity of intermolecular network voids, as rationalized by molecular simulations, are achieved by using contorted monomers for the interfacial polymerization. Composite membranes comprising polyarylate nanofilms with enhanced microporosity fabricated in situ on crosslinked polyimide ultrafiltration membranes show outstanding separation performance in organic solvents, with up to two orders of magnitude higher solvent permeance than membranes fabricated with nanofilms made from non-contorted planar monomers. Here it is shown how ultrathin and microporous polymer membranes, fabricated using sterically contorted monomers, can achieve enhanced performance for solvent-based separations.</description><subject>119/118</subject><subject>639/301/299/1013</subject><subject>639/638/298/923</subject><subject>639/638/455/941</subject><subject>639/638/563/981</subject><subject>639/925/357/551</subject><subject>Biomaterials</subject><subject>Condensed Matter Physics</subject><subject>Crosslinking</subject><subject>Energy efficiency</subject><subject>Materials Science</subject><subject>Membranes</subject><subject>Microporosity</subject><subject>Monomers</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Organic solvents</subject><subject>Particulate composites</subject><subject>Permeability</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Porosity</subject><subject>Solvents</subject><subject>Ultrafiltration</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1LxDAQhoMo7roK_gIpeNFDNd9Nj7L4hYIe9FyyaeJmaZOatEj99Va6q7IXTzMwz7zD-w4AxwheIEjEpatlSzkRO2CKaMZTyjncXfcIYTwBBzGuIMSIMb4PJjhDhAmWTcHDs6_6WofESeeNreqYfNh2mWi3lE7pMqmtCr7xwUfb9smiT6xrdTBSWVklzbhsP2VrvTsEe0ZWUR-t6wy83ly_zO_Sx6fb-_nVY6oozduUaGmQYITlmFJlKGXEKC6o1FrDHJXYoAUuTc6NIignQnDIEZZQcEMJyzCZgbNRtwn-vdOxLWobla4q6bTvYoEEZmywmov_0SzPMSKU0gE93UJXvgtuMDJSWGBOfgWHVGIM2hRNsLUMfYFg8f2LYvOLAT1ZC3aLWpc_4Cb8ATgfgTiM3JsOfy5ui30BQFGRyw</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Jimenez-Solomon, Maria F.</creator><creator>Song, Qilei</creator><creator>Jelfs, Kim E.</creator><creator>Munoz-Ibanez, Marta</creator><creator>Livingston, Andrew G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20160701</creationdate><title>Polymer nanofilms with enhanced microporosity by interfacial polymerization</title><author>Jimenez-Solomon, Maria F. ; Song, Qilei ; Jelfs, Kim E. ; Munoz-Ibanez, Marta ; Livingston, Andrew G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-3eaf185359244cf4453fc684aeee091d2f1b2df96fc31938860612a086f435723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>119/118</topic><topic>639/301/299/1013</topic><topic>639/638/298/923</topic><topic>639/638/455/941</topic><topic>639/638/563/981</topic><topic>639/925/357/551</topic><topic>Biomaterials</topic><topic>Condensed Matter Physics</topic><topic>Crosslinking</topic><topic>Energy efficiency</topic><topic>Materials Science</topic><topic>Membranes</topic><topic>Microporosity</topic><topic>Monomers</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Organic solvents</topic><topic>Particulate composites</topic><topic>Permeability</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Porosity</topic><topic>Solvents</topic><topic>Ultrafiltration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jimenez-Solomon, Maria F.</creatorcontrib><creatorcontrib>Song, Qilei</creatorcontrib><creatorcontrib>Jelfs, Kim E.</creatorcontrib><creatorcontrib>Munoz-Ibanez, Marta</creatorcontrib><creatorcontrib>Livingston, Andrew G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jimenez-Solomon, Maria F.</au><au>Song, Qilei</au><au>Jelfs, Kim E.</au><au>Munoz-Ibanez, Marta</au><au>Livingston, Andrew G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer nanofilms with enhanced microporosity by interfacial polymerization</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>15</volume><issue>7</issue><spage>760</spage><epage>767</epage><pages>760-767</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Highly permeable and selective membranes are desirable for energy-efficient gas and liquid separations. Microporous organic polymers have attracted significant attention in this respect owing to their high porosity, permeability and molecular selectivity. However, it remains challenging to fabricate selective polymer membranes with controlled microporosity that are stable in solvents. Here we report a new approach to designing crosslinked, rigid polymer nanofilms with enhanced microporosity by manipulating the molecular structure. Ultrathin polyarylate nanofilms with thickness down to 20 nm are formed in situ by interfacial polymerization. Enhanced microporosity and higher interconnectivity of intermolecular network voids, as rationalized by molecular simulations, are achieved by using contorted monomers for the interfacial polymerization. Composite membranes comprising polyarylate nanofilms with enhanced microporosity fabricated in situ on crosslinked polyimide ultrafiltration membranes show outstanding separation performance in organic solvents, with up to two orders of magnitude higher solvent permeance than membranes fabricated with nanofilms made from non-contorted planar monomers. Here it is shown how ultrathin and microporous polymer membranes, fabricated using sterically contorted monomers, can achieve enhanced performance for solvent-based separations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27135857</pmid><doi>10.1038/nmat4638</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2016-07, Vol.15 (7), p.760-767
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_1825521598
source Nature; Alma/SFX Local Collection
subjects 119/118
639/301/299/1013
639/638/298/923
639/638/455/941
639/638/563/981
639/925/357/551
Biomaterials
Condensed Matter Physics
Crosslinking
Energy efficiency
Materials Science
Membranes
Microporosity
Monomers
Nanostructure
Nanostructured materials
Nanotechnology
Optical and Electronic Materials
Organic solvents
Particulate composites
Permeability
Polymerization
Polymers
Porosity
Solvents
Ultrafiltration
title Polymer nanofilms with enhanced microporosity by interfacial polymerization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer%20nanofilms%20with%20enhanced%20microporosity%20by%20interfacial%20polymerization&rft.jtitle=Nature%20materials&rft.au=Jimenez-Solomon,%20Maria%20F.&rft.date=2016-07-01&rft.volume=15&rft.issue=7&rft.spage=760&rft.epage=767&rft.pages=760-767&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4638&rft_dat=%3Cproquest_cross%3E1825521598%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799228263&rft_id=info:pmid/27135857&rfr_iscdi=true