Polymer nanofilms with enhanced microporosity by interfacial polymerization
Highly permeable and selective membranes are desirable for energy-efficient gas and liquid separations. Microporous organic polymers have attracted significant attention in this respect owing to their high porosity, permeability and molecular selectivity. However, it remains challenging to fabricate...
Gespeichert in:
Veröffentlicht in: | Nature materials 2016-07, Vol.15 (7), p.760-767 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 767 |
---|---|
container_issue | 7 |
container_start_page | 760 |
container_title | Nature materials |
container_volume | 15 |
creator | Jimenez-Solomon, Maria F. Song, Qilei Jelfs, Kim E. Munoz-Ibanez, Marta Livingston, Andrew G. |
description | Highly permeable and selective membranes are desirable for energy-efficient gas and liquid separations. Microporous organic polymers have attracted significant attention in this respect owing to their high porosity, permeability and molecular selectivity. However, it remains challenging to fabricate selective polymer membranes with controlled microporosity that are stable in solvents. Here we report a new approach to designing crosslinked, rigid polymer nanofilms with enhanced microporosity by manipulating the molecular structure. Ultrathin polyarylate nanofilms with thickness down to 20 nm are formed
in situ
by interfacial polymerization. Enhanced microporosity and higher interconnectivity of intermolecular network voids, as rationalized by molecular simulations, are achieved by using contorted monomers for the interfacial polymerization. Composite membranes comprising polyarylate nanofilms with enhanced microporosity fabricated
in situ
on crosslinked polyimide ultrafiltration membranes show outstanding separation performance in organic solvents, with up to two orders of magnitude higher solvent permeance than membranes fabricated with nanofilms made from non-contorted planar monomers.
Here it is shown how ultrathin and microporous polymer membranes, fabricated using sterically contorted monomers, can achieve enhanced performance for solvent-based separations. |
doi_str_mv | 10.1038/nmat4638 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825521598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825521598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-3eaf185359244cf4453fc684aeee091d2f1b2df96fc31938860612a086f435723</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMo7roK_gIpeNFDNd9Nj7L4hYIe9FyyaeJmaZOatEj99Va6q7IXTzMwz7zD-w4AxwheIEjEpatlSzkRO2CKaMZTyjncXfcIYTwBBzGuIMSIMb4PJjhDhAmWTcHDs6_6WofESeeNreqYfNh2mWi3lE7pMqmtCr7xwUfb9smiT6xrdTBSWVklzbhsP2VrvTsEe0ZWUR-t6wy83ly_zO_Sx6fb-_nVY6oozduUaGmQYITlmFJlKGXEKC6o1FrDHJXYoAUuTc6NIignQnDIEZZQcEMJyzCZgbNRtwn-vdOxLWobla4q6bTvYoEEZmywmov_0SzPMSKU0gE93UJXvgtuMDJSWGBOfgWHVGIM2hRNsLUMfYFg8f2LYvOLAT1ZC3aLWpc_4Cb8ATgfgTiM3JsOfy5ui30BQFGRyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799228263</pqid></control><display><type>article</type><title>Polymer nanofilms with enhanced microporosity by interfacial polymerization</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Jimenez-Solomon, Maria F. ; Song, Qilei ; Jelfs, Kim E. ; Munoz-Ibanez, Marta ; Livingston, Andrew G.</creator><creatorcontrib>Jimenez-Solomon, Maria F. ; Song, Qilei ; Jelfs, Kim E. ; Munoz-Ibanez, Marta ; Livingston, Andrew G.</creatorcontrib><description>Highly permeable and selective membranes are desirable for energy-efficient gas and liquid separations. Microporous organic polymers have attracted significant attention in this respect owing to their high porosity, permeability and molecular selectivity. However, it remains challenging to fabricate selective polymer membranes with controlled microporosity that are stable in solvents. Here we report a new approach to designing crosslinked, rigid polymer nanofilms with enhanced microporosity by manipulating the molecular structure. Ultrathin polyarylate nanofilms with thickness down to 20 nm are formed
in situ
by interfacial polymerization. Enhanced microporosity and higher interconnectivity of intermolecular network voids, as rationalized by molecular simulations, are achieved by using contorted monomers for the interfacial polymerization. Composite membranes comprising polyarylate nanofilms with enhanced microporosity fabricated
in situ
on crosslinked polyimide ultrafiltration membranes show outstanding separation performance in organic solvents, with up to two orders of magnitude higher solvent permeance than membranes fabricated with nanofilms made from non-contorted planar monomers.
Here it is shown how ultrathin and microporous polymer membranes, fabricated using sterically contorted monomers, can achieve enhanced performance for solvent-based separations.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4638</identifier><identifier>PMID: 27135857</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/301/299/1013 ; 639/638/298/923 ; 639/638/455/941 ; 639/638/563/981 ; 639/925/357/551 ; Biomaterials ; Condensed Matter Physics ; Crosslinking ; Energy efficiency ; Materials Science ; Membranes ; Microporosity ; Monomers ; Nanostructure ; Nanostructured materials ; Nanotechnology ; Optical and Electronic Materials ; Organic solvents ; Particulate composites ; Permeability ; Polymerization ; Polymers ; Porosity ; Solvents ; Ultrafiltration</subject><ispartof>Nature materials, 2016-07, Vol.15 (7), p.760-767</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Jul 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-3eaf185359244cf4453fc684aeee091d2f1b2df96fc31938860612a086f435723</citedby><cites>FETCH-LOGICAL-c449t-3eaf185359244cf4453fc684aeee091d2f1b2df96fc31938860612a086f435723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27135857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jimenez-Solomon, Maria F.</creatorcontrib><creatorcontrib>Song, Qilei</creatorcontrib><creatorcontrib>Jelfs, Kim E.</creatorcontrib><creatorcontrib>Munoz-Ibanez, Marta</creatorcontrib><creatorcontrib>Livingston, Andrew G.</creatorcontrib><title>Polymer nanofilms with enhanced microporosity by interfacial polymerization</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Highly permeable and selective membranes are desirable for energy-efficient gas and liquid separations. Microporous organic polymers have attracted significant attention in this respect owing to their high porosity, permeability and molecular selectivity. However, it remains challenging to fabricate selective polymer membranes with controlled microporosity that are stable in solvents. Here we report a new approach to designing crosslinked, rigid polymer nanofilms with enhanced microporosity by manipulating the molecular structure. Ultrathin polyarylate nanofilms with thickness down to 20 nm are formed
in situ
by interfacial polymerization. Enhanced microporosity and higher interconnectivity of intermolecular network voids, as rationalized by molecular simulations, are achieved by using contorted monomers for the interfacial polymerization. Composite membranes comprising polyarylate nanofilms with enhanced microporosity fabricated
in situ
on crosslinked polyimide ultrafiltration membranes show outstanding separation performance in organic solvents, with up to two orders of magnitude higher solvent permeance than membranes fabricated with nanofilms made from non-contorted planar monomers.
Here it is shown how ultrathin and microporous polymer membranes, fabricated using sterically contorted monomers, can achieve enhanced performance for solvent-based separations.</description><subject>119/118</subject><subject>639/301/299/1013</subject><subject>639/638/298/923</subject><subject>639/638/455/941</subject><subject>639/638/563/981</subject><subject>639/925/357/551</subject><subject>Biomaterials</subject><subject>Condensed Matter Physics</subject><subject>Crosslinking</subject><subject>Energy efficiency</subject><subject>Materials Science</subject><subject>Membranes</subject><subject>Microporosity</subject><subject>Monomers</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Organic solvents</subject><subject>Particulate composites</subject><subject>Permeability</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Porosity</subject><subject>Solvents</subject><subject>Ultrafiltration</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1LxDAQhoMo7roK_gIpeNFDNd9Nj7L4hYIe9FyyaeJmaZOatEj99Va6q7IXTzMwz7zD-w4AxwheIEjEpatlSzkRO2CKaMZTyjncXfcIYTwBBzGuIMSIMb4PJjhDhAmWTcHDs6_6WofESeeNreqYfNh2mWi3lE7pMqmtCr7xwUfb9smiT6xrdTBSWVklzbhsP2VrvTsEe0ZWUR-t6wy83ly_zO_Sx6fb-_nVY6oozduUaGmQYITlmFJlKGXEKC6o1FrDHJXYoAUuTc6NIignQnDIEZZQcEMJyzCZgbNRtwn-vdOxLWobla4q6bTvYoEEZmywmov_0SzPMSKU0gE93UJXvgtuMDJSWGBOfgWHVGIM2hRNsLUMfYFg8f2LYvOLAT1ZC3aLWpc_4Cb8ATgfgTiM3JsOfy5ui30BQFGRyw</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Jimenez-Solomon, Maria F.</creator><creator>Song, Qilei</creator><creator>Jelfs, Kim E.</creator><creator>Munoz-Ibanez, Marta</creator><creator>Livingston, Andrew G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20160701</creationdate><title>Polymer nanofilms with enhanced microporosity by interfacial polymerization</title><author>Jimenez-Solomon, Maria F. ; Song, Qilei ; Jelfs, Kim E. ; Munoz-Ibanez, Marta ; Livingston, Andrew G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-3eaf185359244cf4453fc684aeee091d2f1b2df96fc31938860612a086f435723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>119/118</topic><topic>639/301/299/1013</topic><topic>639/638/298/923</topic><topic>639/638/455/941</topic><topic>639/638/563/981</topic><topic>639/925/357/551</topic><topic>Biomaterials</topic><topic>Condensed Matter Physics</topic><topic>Crosslinking</topic><topic>Energy efficiency</topic><topic>Materials Science</topic><topic>Membranes</topic><topic>Microporosity</topic><topic>Monomers</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Organic solvents</topic><topic>Particulate composites</topic><topic>Permeability</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Porosity</topic><topic>Solvents</topic><topic>Ultrafiltration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jimenez-Solomon, Maria F.</creatorcontrib><creatorcontrib>Song, Qilei</creatorcontrib><creatorcontrib>Jelfs, Kim E.</creatorcontrib><creatorcontrib>Munoz-Ibanez, Marta</creatorcontrib><creatorcontrib>Livingston, Andrew G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jimenez-Solomon, Maria F.</au><au>Song, Qilei</au><au>Jelfs, Kim E.</au><au>Munoz-Ibanez, Marta</au><au>Livingston, Andrew G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer nanofilms with enhanced microporosity by interfacial polymerization</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>15</volume><issue>7</issue><spage>760</spage><epage>767</epage><pages>760-767</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Highly permeable and selective membranes are desirable for energy-efficient gas and liquid separations. Microporous organic polymers have attracted significant attention in this respect owing to their high porosity, permeability and molecular selectivity. However, it remains challenging to fabricate selective polymer membranes with controlled microporosity that are stable in solvents. Here we report a new approach to designing crosslinked, rigid polymer nanofilms with enhanced microporosity by manipulating the molecular structure. Ultrathin polyarylate nanofilms with thickness down to 20 nm are formed
in situ
by interfacial polymerization. Enhanced microporosity and higher interconnectivity of intermolecular network voids, as rationalized by molecular simulations, are achieved by using contorted monomers for the interfacial polymerization. Composite membranes comprising polyarylate nanofilms with enhanced microporosity fabricated
in situ
on crosslinked polyimide ultrafiltration membranes show outstanding separation performance in organic solvents, with up to two orders of magnitude higher solvent permeance than membranes fabricated with nanofilms made from non-contorted planar monomers.
Here it is shown how ultrathin and microporous polymer membranes, fabricated using sterically contorted monomers, can achieve enhanced performance for solvent-based separations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27135857</pmid><doi>10.1038/nmat4638</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2016-07, Vol.15 (7), p.760-767 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825521598 |
source | Nature; Alma/SFX Local Collection |
subjects | 119/118 639/301/299/1013 639/638/298/923 639/638/455/941 639/638/563/981 639/925/357/551 Biomaterials Condensed Matter Physics Crosslinking Energy efficiency Materials Science Membranes Microporosity Monomers Nanostructure Nanostructured materials Nanotechnology Optical and Electronic Materials Organic solvents Particulate composites Permeability Polymerization Polymers Porosity Solvents Ultrafiltration |
title | Polymer nanofilms with enhanced microporosity by interfacial polymerization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer%20nanofilms%20with%20enhanced%20microporosity%20by%20interfacial%20polymerization&rft.jtitle=Nature%20materials&rft.au=Jimenez-Solomon,%20Maria%20F.&rft.date=2016-07-01&rft.volume=15&rft.issue=7&rft.spage=760&rft.epage=767&rft.pages=760-767&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4638&rft_dat=%3Cproquest_cross%3E1825521598%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799228263&rft_id=info:pmid/27135857&rfr_iscdi=true |