Flux Enhancement in Membrane Distillation Using Nanofiber Membranes

Membrane distillation (MD) is an emerging separation technology, whose largest application potential lies in the desalination of highly concentrated solutions, which are out of the scope of reverse osmosis. Despite many attractive features, this technology is still awaiting large industrial applicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanomaterials 2016-01, Vol.2016 (2016), p.1-7
Hauptverfasser: Lederer, T., Chaloupek, Jiri, Michal, Komárek, Jiříček, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 2016
container_start_page 1
container_title Journal of nanomaterials
container_volume 2016
creator Lederer, T.
Chaloupek, Jiri
Michal, Komárek
Jiříček, T.
description Membrane distillation (MD) is an emerging separation technology, whose largest application potential lies in the desalination of highly concentrated solutions, which are out of the scope of reverse osmosis. Despite many attractive features, this technology is still awaiting large industrial application. The main reason is the lack of commercially available membranes with fluxes comparable to reverse osmosis. MD is a thermal separation process driven by a partial vapour pressure difference. Flux, distillate purity, and thermal efficiency are always in conflict, all three being strictly connected with pore size, membrane hydrophobicity, and thickness. The world has not seen the ideal membrane yet, but nanofibers may offer a solution to these contradictory requirements. Membranes of electrospun PVDF were tested under various conditions on a direct contact (DCMD) unit, in order to determine the optimum conditions for maximum flux. In addition, their performance was compared to commonly available PTFE, PE, and PES membranes. It was confirmed that thinner membranes have higher fluxes and a lower distillate purity and also higher energy losses via conduction across the membrane. As both mass and heat transfer are connected, it is best to develop new membranes with a target application in mind, for the specific membrane module and operational conditions.
doi_str_mv 10.1155/2016/9327431
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825520757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4093996481</sourcerecordid><originalsourceid>FETCH-LOGICAL-a503t-24bf25847840f2eeb4af346703734727244de316b25f5c85487b273a3de1df893</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAiCs7pzbMUvAhal8-mOcrcVJh6ceeQtm9cRpvOpEX97-3omODF0_sefjw8PFF0jtEtxpxPCMLpRFIiGMUH0QinmUgYJvJw_2N0HJ2EsEaIccnJKJrOq-4rnrmVdgXU4NrYuvgZ6txrB_G9Da2tKt3axsXLYN17_KJdY2wOfq_CaXRkdBXgbHfH0XI-e5s-JovXh6fp3SLRHNE2ISw3hGdMZAwZApAzbShLBaKCMkEEYawEitOccMOLjLNM5ERQTUvApckkHUdXQ-7GNx8dhFbVNhTQ93PQdEHhjHBOkOCip5d_6LrpvOvbKSxk34CnGPfqZlCFb0LwYNTG21r7b4WR2i6qtouq3aI9vx74yrpSf9r_9MWgoTdg9K_GSDIp6Q_d1nzZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797845611</pqid></control><display><type>article</type><title>Flux Enhancement in Membrane Distillation Using Nanofiber Membranes</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lederer, T. ; Chaloupek, Jiri ; Michal, Komárek ; Jiříček, T.</creator><contributor>Patra, Niranjan</contributor><creatorcontrib>Lederer, T. ; Chaloupek, Jiri ; Michal, Komárek ; Jiříček, T. ; Patra, Niranjan</creatorcontrib><description>Membrane distillation (MD) is an emerging separation technology, whose largest application potential lies in the desalination of highly concentrated solutions, which are out of the scope of reverse osmosis. Despite many attractive features, this technology is still awaiting large industrial application. The main reason is the lack of commercially available membranes with fluxes comparable to reverse osmosis. MD is a thermal separation process driven by a partial vapour pressure difference. Flux, distillate purity, and thermal efficiency are always in conflict, all three being strictly connected with pore size, membrane hydrophobicity, and thickness. The world has not seen the ideal membrane yet, but nanofibers may offer a solution to these contradictory requirements. Membranes of electrospun PVDF were tested under various conditions on a direct contact (DCMD) unit, in order to determine the optimum conditions for maximum flux. In addition, their performance was compared to commonly available PTFE, PE, and PES membranes. It was confirmed that thinner membranes have higher fluxes and a lower distillate purity and also higher energy losses via conduction across the membrane. As both mass and heat transfer are connected, it is best to develop new membranes with a target application in mind, for the specific membrane module and operational conditions.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><identifier>DOI: 10.1155/2016/9327431</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Contact angle ; Distillation ; Energy efficiency ; Flux ; Fluxes ; Heat conductivity ; Membranes ; Nanomaterials ; Nanostructure ; Permeability ; Pore size ; Reverse osmosis ; Separation ; Studies ; Vapor pressure</subject><ispartof>Journal of nanomaterials, 2016-01, Vol.2016 (2016), p.1-7</ispartof><rights>Copyright © 2016 T. Jiříček et al.</rights><rights>Copyright © 2016 T. Jiricek et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a503t-24bf25847840f2eeb4af346703734727244de316b25f5c85487b273a3de1df893</citedby><cites>FETCH-LOGICAL-a503t-24bf25847840f2eeb4af346703734727244de316b25f5c85487b273a3de1df893</cites><orcidid>0000-0002-1569-5082 ; 0000-0003-1865-1904 ; 0000-0003-2780-831X ; 0000-0001-7519-0935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Patra, Niranjan</contributor><creatorcontrib>Lederer, T.</creatorcontrib><creatorcontrib>Chaloupek, Jiri</creatorcontrib><creatorcontrib>Michal, Komárek</creatorcontrib><creatorcontrib>Jiříček, T.</creatorcontrib><title>Flux Enhancement in Membrane Distillation Using Nanofiber Membranes</title><title>Journal of nanomaterials</title><description>Membrane distillation (MD) is an emerging separation technology, whose largest application potential lies in the desalination of highly concentrated solutions, which are out of the scope of reverse osmosis. Despite many attractive features, this technology is still awaiting large industrial application. The main reason is the lack of commercially available membranes with fluxes comparable to reverse osmosis. MD is a thermal separation process driven by a partial vapour pressure difference. Flux, distillate purity, and thermal efficiency are always in conflict, all three being strictly connected with pore size, membrane hydrophobicity, and thickness. The world has not seen the ideal membrane yet, but nanofibers may offer a solution to these contradictory requirements. Membranes of electrospun PVDF were tested under various conditions on a direct contact (DCMD) unit, in order to determine the optimum conditions for maximum flux. In addition, their performance was compared to commonly available PTFE, PE, and PES membranes. It was confirmed that thinner membranes have higher fluxes and a lower distillate purity and also higher energy losses via conduction across the membrane. As both mass and heat transfer are connected, it is best to develop new membranes with a target application in mind, for the specific membrane module and operational conditions.</description><subject>Contact angle</subject><subject>Distillation</subject><subject>Energy efficiency</subject><subject>Flux</subject><subject>Fluxes</subject><subject>Heat conductivity</subject><subject>Membranes</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Permeability</subject><subject>Pore size</subject><subject>Reverse osmosis</subject><subject>Separation</subject><subject>Studies</subject><subject>Vapor pressure</subject><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M1LwzAYBvAiCs7pzbMUvAhal8-mOcrcVJh6ceeQtm9cRpvOpEX97-3omODF0_sefjw8PFF0jtEtxpxPCMLpRFIiGMUH0QinmUgYJvJw_2N0HJ2EsEaIccnJKJrOq-4rnrmVdgXU4NrYuvgZ6txrB_G9Da2tKt3axsXLYN17_KJdY2wOfq_CaXRkdBXgbHfH0XI-e5s-JovXh6fp3SLRHNE2ISw3hGdMZAwZApAzbShLBaKCMkEEYawEitOccMOLjLNM5ERQTUvApckkHUdXQ-7GNx8dhFbVNhTQ93PQdEHhjHBOkOCip5d_6LrpvOvbKSxk34CnGPfqZlCFb0LwYNTG21r7b4WR2i6qtouq3aI9vx74yrpSf9r_9MWgoTdg9K_GSDIp6Q_d1nzZ</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Lederer, T.</creator><creator>Chaloupek, Jiri</creator><creator>Michal, Komárek</creator><creator>Jiříček, T.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-1569-5082</orcidid><orcidid>https://orcid.org/0000-0003-1865-1904</orcidid><orcidid>https://orcid.org/0000-0003-2780-831X</orcidid><orcidid>https://orcid.org/0000-0001-7519-0935</orcidid></search><sort><creationdate>20160101</creationdate><title>Flux Enhancement in Membrane Distillation Using Nanofiber Membranes</title><author>Lederer, T. ; Chaloupek, Jiri ; Michal, Komárek ; Jiříček, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a503t-24bf25847840f2eeb4af346703734727244de316b25f5c85487b273a3de1df893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Contact angle</topic><topic>Distillation</topic><topic>Energy efficiency</topic><topic>Flux</topic><topic>Fluxes</topic><topic>Heat conductivity</topic><topic>Membranes</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Permeability</topic><topic>Pore size</topic><topic>Reverse osmosis</topic><topic>Separation</topic><topic>Studies</topic><topic>Vapor pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lederer, T.</creatorcontrib><creatorcontrib>Chaloupek, Jiri</creatorcontrib><creatorcontrib>Michal, Komárek</creatorcontrib><creatorcontrib>Jiříček, T.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lederer, T.</au><au>Chaloupek, Jiri</au><au>Michal, Komárek</au><au>Jiříček, T.</au><au>Patra, Niranjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flux Enhancement in Membrane Distillation Using Nanofiber Membranes</atitle><jtitle>Journal of nanomaterials</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>Membrane distillation (MD) is an emerging separation technology, whose largest application potential lies in the desalination of highly concentrated solutions, which are out of the scope of reverse osmosis. Despite many attractive features, this technology is still awaiting large industrial application. The main reason is the lack of commercially available membranes with fluxes comparable to reverse osmosis. MD is a thermal separation process driven by a partial vapour pressure difference. Flux, distillate purity, and thermal efficiency are always in conflict, all three being strictly connected with pore size, membrane hydrophobicity, and thickness. The world has not seen the ideal membrane yet, but nanofibers may offer a solution to these contradictory requirements. Membranes of electrospun PVDF were tested under various conditions on a direct contact (DCMD) unit, in order to determine the optimum conditions for maximum flux. In addition, their performance was compared to commonly available PTFE, PE, and PES membranes. It was confirmed that thinner membranes have higher fluxes and a lower distillate purity and also higher energy losses via conduction across the membrane. As both mass and heat transfer are connected, it is best to develop new membranes with a target application in mind, for the specific membrane module and operational conditions.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2016/9327431</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1569-5082</orcidid><orcidid>https://orcid.org/0000-0003-1865-1904</orcidid><orcidid>https://orcid.org/0000-0003-2780-831X</orcidid><orcidid>https://orcid.org/0000-0001-7519-0935</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-4110
ispartof Journal of nanomaterials, 2016-01, Vol.2016 (2016), p.1-7
issn 1687-4110
1687-4129
language eng
recordid cdi_proquest_miscellaneous_1825520757
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Contact angle
Distillation
Energy efficiency
Flux
Fluxes
Heat conductivity
Membranes
Nanomaterials
Nanostructure
Permeability
Pore size
Reverse osmosis
Separation
Studies
Vapor pressure
title Flux Enhancement in Membrane Distillation Using Nanofiber Membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flux%20Enhancement%20in%20Membrane%20Distillation%20Using%20Nanofiber%20Membranes&rft.jtitle=Journal%20of%20nanomaterials&rft.au=Lederer,%20T.&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/10.1155/2016/9327431&rft_dat=%3Cproquest_cross%3E4093996481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1797845611&rft_id=info:pmid/&rfr_iscdi=true